8.已知函數(shù)f(x)=x2-2ax+b的值域?yàn)閇-1,+∞),則函數(shù)g(x)=f'(x)+b的零點(diǎn)的取值范圍是(-∞,1].

分析 求出a,b的關(guān)系,令g(x)=0,得到x=a-$\frac{2}$=a-$\frac{{a}^{2}-1}{2}$,根據(jù)二次函數(shù)的性質(zhì)求出其范圍即可.

解答 解:∵f(x)=x2-2ax+b=(x-a)2+b-a2≥b-a2,
又∵f(x)∈[-1,+∞),
∴b-a2=-1,即b=a2-1,
又因g(x)=f'(x)+b=2x-2a+b,
若令g(x)=0,
則x=a-$\frac{2}$=a-$\frac{{a}^{2}-1}{2}$=-$\frac{1}{2}$(a-1)2+1≤1
故g(x)的零點(diǎn)取值范圍是(-∞,1],
故答案為:(-∞,1].

點(diǎn)評(píng) 本題考查了二次函數(shù)的性質(zhì),考查函數(shù)的零點(diǎn)問(wèn)題以及轉(zhuǎn)化思想,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知F1,F(xiàn)2是雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>b>0})$的左右焦點(diǎn),以F1,F(xiàn)2為一邊的等邊三角形△PF1F2與雙曲線的兩交點(diǎn)M,N恰好為等邊三角形兩邊中點(diǎn),則雙曲線離心率為1+$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.從直線x-y+3=0上的點(diǎn)向圓x2+y2-4x-4y+7=0引切線,則切線長(zhǎng)的最小值為(  )
A.$\frac{3\sqrt{2}}{2}$B.$\frac{\sqrt{14}}{2}$C.$\frac{3\sqrt{2}}{4}$D.$\frac{3\sqrt{2}}{2}$-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=lnx+ax(a∈R).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)a<0時(shí),求函數(shù)f(x)在[1,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.傳說(shuō)古希臘畢達(dá)哥拉斯(Pythagoras,約公元前570年&公元前500年)學(xué)派的數(shù)學(xué)家經(jīng)常在沙灘上研究數(shù)學(xué)問(wèn)題,他們?cè)谏碁┥袭?huà)點(diǎn)或用小石子來(lái)表示數(shù).根據(jù)下列四個(gè)圖形及相應(yīng)的正方形的個(gè)數(shù)的變化規(guī)律,第n個(gè)圖形中有$\frac{n(n+1)}{2}$個(gè)正方形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若底面邊長(zhǎng)為$\sqrt{3}$,高為2$\sqrt{3}$的正三棱柱內(nèi)接于半徑為R的球O,則球O的半徑R的值為(  )
A.2B.$\sqrt{2}$C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.如圖,在點(diǎn)B處測(cè)得山頂A的仰角為β,在點(diǎn)C處測(cè)得山頂A的仰角為α,BC=a,則山高AH為(  )
A.$\frac{asinαsinβ}{{sin({α-β})}}$B.$\frac{asinαcosβ}{{sin({α-β})}}$C.$\frac{acosαsinβ}{{sin({α-β})}}$D.$\frac{acosαcosβ}{{sin({α-β})}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知集合A={x|x2-2x≤0},B={-1,0,1,2,3},則A∩B={0,1,2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.某班有50名學(xué)生,一次考試的數(shù)學(xué)成績(jī)?chǔ)畏䦶恼龖B(tài)分布N(100,102),已知P(90≤ξ≤100)=0.3,估計(jì)該班學(xué)生成績(jī)?cè)?10以上的人數(shù)為10人.

查看答案和解析>>

同步練習(xí)冊(cè)答案