A. | f(sinα)>f(cosβ) | B. | f(sinα)<f(cosβ) | ||
C. | f(sinα)=f(cosβ) | D. | 以上情況均有可能 |
分析 由平移圖象可得y=f(x)的對稱軸為x=0,由f(x)f(x+1)=4,將x換為x+1,可得f(x)的周期為2,由題意可得f(x)在(-1,0)上遞減,在(0,1)上遞增,由α,β是鈍角三角形中兩銳角,可得α+β<$\frac{π}{2}$,運(yùn)用誘導(dǎo)公式和正弦函數(shù)的單調(diào)性,即可判斷大小,得到結(jié)論.
解答 解:根據(jù)題意,f(x-1)的對稱軸為x=1,可得y=f(x)的對稱軸為x=0,即函數(shù)f(x)為偶函數(shù),
又f(x)f(x+1)=4,
可得f(x+1)f(x+2)=4,即為f(x+2)=f(x),
函數(shù)f(x)為最小正周期為2的偶函數(shù).
f(x)在區(qū)間(1,2)上單調(diào)遞減,
可得f(x)在(-1,0)上遞減,在(0,1)上遞增,
又由α,β是鈍角三角形中兩銳角,可得α+β<$\frac{π}{2}$,
即有0<α<$\frac{π}{2}$-β<$\frac{π}{2}$,進(jìn)而有sinα<sin($\frac{π}{2}$-β)=cosβ,
則f(sinα)<f(cosβ).
故選:B.
點(diǎn)評 本題考查函數(shù)的對稱性和周期性的運(yùn)用,考查偶函數(shù)的單調(diào)性的運(yùn)用,同時(shí)考查三角形函數(shù)的誘導(dǎo)公式和正弦函數(shù)的單調(diào)性,考查運(yùn)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
對服務(wù)好評 | 對服務(wù)不滿意 | 合計(jì) | |
對 商品 好評 | |||
對商品不滿意 | |||
合 計(jì) |
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 1 | C. | $\frac{3}{4}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=lnx | B. | f(x)=e-x | C. | $f(x)=\sqrt{x}$ | D. | $f(x)=-\frac{1}{x}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 對于任意x∈(0,3π),都有f(x1)≤f(x)≤f(x2),則|x1-x2|的最小值為$\frac{π}{2}$ | |
B. | 存在a∈R,使得函數(shù)f(x+a)為偶函數(shù) | |
C. | 存在x0∈(0,3π),使得f(x0)=4 | |
D. | 函數(shù)f(x)在區(qū)間$[\frac{π}{2},\frac{5π}{4}]$內(nèi)單調(diào)遞增 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com