分析 (1)根據(jù)正弦定理可得和誘導(dǎo)公式即可證明,
(2)由誘導(dǎo)公式和二倍角公式以及同角的三角函數(shù)的關(guān)系和正弦定理即可求出
解答 (1)證明:∵bsinA+acos(B+C)=0,
∴bsinA-acosA=0,
又由正弦定理得sinAcosA-sinBsinA=0,
∵sinA≠0,
即cosA=sinB.
∴cosA=sin($\frac{π}{2}$+A)=sinB,
∴$\frac{π}{2}$+A+B=π,
即C=A+B=$\frac{π}{2}$,或B=$\frac{π}{2}$+A,
即B-A=$\frac{π}{2}$,
又sinC=$\frac{3}{5}$,
∴B-A=$\frac{π}{2}$,
(2)由于$c=2,sinC=\frac{3}{5}$,C為銳角,
則cosC=sin($\frac{π}{2}$-C)=sin2A=2sinAcosA=$\frac{4}{5}$,
則1+2sinAcosA=(sinA+cosA)2=$\frac{9}{5}$,
∴sinA+cosA=$\frac{3\sqrt{5}}{5}$,
∴a+b=$\frac{c}{sinc}$(sinA+cosA)=$\frac{10}{3}$×$\frac{3\sqrt{5}}{5}$=2$\sqrt{5}$.
點評 本題考查了正弦定理和二倍角公式以及同角的三角函數(shù)的關(guān)系,考查了學(xué)生的運算能力和轉(zhuǎn)化能力,屬于中檔題
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,0) | B. | (0,1) | C. | (1,1) | D. | (1,-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<b<c | B. | b<c<a | C. | c<a<b | D. | b<a<c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com