10.已知集合A={-1,0,1},B={-1,1},則集合C={a+b|a∈A,b∈B}中的元素個(gè)數(shù)為( 。
A.2B.3C.4D.5

分析 根據(jù)集合的定義與運(yùn)算法則,進(jìn)行計(jì)算即可

解答 解:∵集合A={-1,0,1},B={-1,1},
∴集合C={a+b|a∈A,b∈B}={-2,-1,0,1,2},
故選D

點(diǎn)評(píng) 本題考查了集合的定義與運(yùn)算問題,是基礎(chǔ)題目

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=ax-x2-lnx存在極值,若這些極值的和大于5+ln2,則實(shí)數(shù)a的取值范圍為( 。
A.(-∞,4)B.(4,+∞)C.(-∞,2)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{1}{2}$x2-2aln x+(a-2)x,a∈R.
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的圖象在點(diǎn)(1,f(1))處的切線方程;
(2)是否存在實(shí)數(shù)a,對(duì)任意的x1,x2∈(0,+∞)且x1≠x2有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$>a恒成立?若存在,求出a的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{3x+5,(x<1)}\\{lo{g}_{\frac{1}{2}}x-1,(x≥1)}\end{array}\right.$,則f(f(2$\sqrt{2}$))=-$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某校在兩個(gè)班進(jìn)行學(xué)習(xí)方式對(duì)比試驗(yàn),半年后進(jìn)行了一次檢測(cè),試驗(yàn)班與對(duì)照班成績統(tǒng)計(jì)如2×2列聯(lián)表所示(單位:人).
80及80分以上80分以下合計(jì)
試驗(yàn)班301040
對(duì)照班18m40
合計(jì)4832n
(1)求m,n
(2)你有多大把握認(rèn)為“成績與學(xué)習(xí)方式有關(guān)系”?
參考公式及數(shù)據(jù):K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d為樣本容量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.某班主任對(duì)班級(jí)90名學(xué)生進(jìn)行了作業(yè)量多少的調(diào)查,結(jié)合數(shù)據(jù)建立了下列列聯(lián)表:
認(rèn)為作業(yè)多認(rèn)為作業(yè)少總計(jì)
喜歡玩電腦游戲103545
不喜歡玩玩電腦游戲73845
總計(jì)177390
利用獨(dú)立性檢驗(yàn)估計(jì),你認(rèn)為推斷喜歡電腦游戲與認(rèn)為作業(yè)多少有關(guān)系錯(cuò)誤的概率介于(  )
(觀測(cè)值表如下)
P(K2≥k00.500.400.250.15
k00.4550.7081.3232.072
A.0.15~0.25B.0.4~0.5C.0.5~0.6D.0.75~0.85

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)y=2sin(ωx+φ)(ω>0),若存在x0∈R,使得f(x0+2)-f(x0)=4,則ω的最小值為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)偶函數(shù)f(x)=sin(ωx+ϕ),ω>0,若f(x)在區(qū)間[0,π]至少存在一個(gè)零點(diǎn),則ω的最小值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=ea(x-1)-ax2,a為不等于零的常數(shù).
(Ⅰ)當(dāng)a<0時(shí),求函數(shù)f′(x)的零點(diǎn)個(gè)數(shù);
(Ⅱ)若對(duì)任意x1,x2,當(dāng)x1<x2時(shí),f(x2)-f(x1)>a(${e}^{a({x}_{1}-1)}$-2x1)(x2-x1)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案