9.若函數(shù)f(x)=$\left\{\begin{array}{l}(2b-1)•{3^x}-b,x>0\\-{x^2}+(2-b)x,x≤0\end{array}$在R上為增函數(shù),則實(shí)數(shù)b的取值范圍為( 。
A.$(\frac{1}{2},2]$B.[1,2]C.(1,2]D.$(\frac{1}{2},2)$

分析 利用函數(shù)的解析式逐段考查所給函數(shù)的性質(zhì),結(jié)合函數(shù)在點(diǎn)x=0的性質(zhì)整理計(jì)算即可求得最終結(jié)果.

解答 解:令f1(x)=(2b-1)×3x-b(x>0),f2(x)=-x2+(2-b)x(x?0),
要使f(x)在R上為增函數(shù),須有f1(x)遞增,f2(x)遞增,且f2(0)?f1(0),
即$\left\{\begin{array}{l}{2b-1>0}\\{\frac{2-b}{2}≥0}\\{0≤b-1}\end{array}\right.$,解得1?b?2.
則實(shí)數(shù)b的取值范圍為[1,2].
故選:B.

點(diǎn)評(píng) 本題考查函數(shù)的單調(diào)性,分段函數(shù)的性質(zhì)等,重點(diǎn)考查學(xué)生對(duì)基礎(chǔ)概念的理解和計(jì)算能力,屬于中等題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.根據(jù)“2015年國(guó)民經(jīng)濟(jì)和社會(huì)發(fā)展統(tǒng)計(jì)公報(bào)”中公布的數(shù)據(jù),從2011 年到2015 年,我國(guó)的第三產(chǎn)業(yè)在GDP中的比重如下:
年份20112012201320142015
年份代碼x12345
第三產(chǎn)業(yè)比重(%)44.345.546.948.150.5
(Ⅰ)在所給坐標(biāo)系中作出數(shù)據(jù)對(duì)應(yīng)的散點(diǎn)圖;
(Ⅱ)建立第三產(chǎn)業(yè)在GDP中的比重y關(guān)于年份代碼x的回歸方程;
(Ⅲ)按照當(dāng)前的變化趨勢(shì),預(yù)測(cè)2017 年我國(guó)第三產(chǎn)業(yè)在GDP中的比重.
附注:回歸直線方程$\widehaty=\widehata+\widehatbx$中的斜率和截距的最小二乘估計(jì)公式分別為:$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y})}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$,$\sum_{i=1}^5{{x_i}{y_i}}=720.9$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.命題p:a(1-a)>0;命題q:y=x2+(2a-3)x+1與x軸交于不同的兩點(diǎn),如果命題“p∨q”為真,“p∧q”為假,則a的取值范圍是(-∞,0]∪$[\frac{1}{2},1)$∪$(\frac{5}{2},+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.在△ABC中,AB=5,AC=6,BC=7,S△ABC=6$\sqrt{6}$,O是△ABC的內(nèi)心,若$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,其中0≤x≤1,0≤y≤1,則動(dòng)點(diǎn)P的軌跡所覆蓋的面積是( 。
A.$\frac{{10\sqrt{6}}}{3}$B.$\frac{{5\sqrt{6}}}{3}$C.$\frac{10}{3}$D.$\frac{20}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,AB是圓的直徑,PA垂直于圓所在的平面,C是圓上的一點(diǎn),
E,F(xiàn)分別為PA,PC的中點(diǎn).
(1)求證:EF∥平面ABC
(2)求證:BC⊥平面PAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.函數(shù)f(x)=-x2+2(a-1)x+2在(-∞,4]上是增函數(shù),則實(shí)數(shù)a的范圍是(  )
A.a≥5B.a≥3C.a≤3D.a≤-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在直角坐標(biāo)系xoy中,設(shè)復(fù)數(shù)z滿足|z-1|=1.
(Ⅰ)求復(fù)數(shù)z所對(duì)應(yīng)的點(diǎn)(x,y)的軌跡方程C;
(Ⅱ)以原點(diǎn)為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,把(Ⅰ)中的曲線C化為極坐標(biāo)方程,并判斷其與曲線$ρcosθ+\sqrt{3}ρsinθ-3=0$的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若a,b∈R,使|a|+|b|>4成立的一個(gè)充分不必要條件是(  )
A.|a+b|≥4B.|a|≥4C.|a|≥2且|b|≥2D.b<-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=b(x+1)lnx-x+1,斜率為1的直線與f(x)相切于(1,0)點(diǎn).
(1)求h(x)=f(x)-xlnx的單調(diào)區(qū)間;
(2)證明:(x-1)f(x)≥0.

查看答案和解析>>

同步練習(xí)冊(cè)答案