【題目】設(shè)a,b∈R,關(guān)于x的方程(x2﹣ax+1)(x2﹣bx+1)=0的四個實根構(gòu)成以q為公比的等比數(shù)列,若q∈[,2],則ab的取值范圍為______.
【答案】.
【解析】
利用等比數(shù)列的性質(zhì)確定方程的根,由韋達定理表示出ab,再利用換元法轉(zhuǎn)化為二次函數(shù),根據(jù)q的范圍和二次函數(shù)的性質(zhì),確定ab的最值即可求出ab的取值范圍.
解:設(shè)方程(x2﹣ax+1)(x2﹣bx+1)=0的4個實數(shù)根依次為m,mq,mq2,mq3,
由等比數(shù)列性質(zhì),不妨設(shè)m,mq3為x2﹣ax+1=0的兩個實數(shù)根,則mq,mq2為方程x2﹣bx+1=0的兩個根,
由韋達定理得,m2q3=1,m+mq3=a,mq+mq2=b,則
故ab=(m+mq3)(mq+mq2)=m2(1+q3)(q+q2)
(1+q3)(q+q2),
設(shè)t,則t2﹣2,
因為q∈[,2],且t在[,1]上遞減,在(1,2]上遞增,
所以t∈[2,],
則ab=t2+t﹣2,
所以當(dāng)t=2時,ab取到最小值是4,
當(dāng)t時,ab取到最大值是,
所以ab的取值范圍是:.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年10月5日, 美國NBA火箭隊總經(jīng)理莫雷公開發(fā)布涉港錯誤言論,中國公司與明星紛紛站出來抵制火箭隊,隨后京東、天貓、淘寶等中國電商平臺全線下架了火箭隊的所有商品,當(dāng)天有大量網(wǎng)友關(guān)注此事,某網(wǎng)上論壇從關(guān)注此事跟帖中,隨機抽取了100名網(wǎng)友進行調(diào)查統(tǒng)計,先分別統(tǒng)計他們在跟帖中的留言條數(shù),再把網(wǎng)友人數(shù)按留言條數(shù)分成6組:,,,,,,得到如圖所示的頻率分布直方圖;并將其中留言不低于40條的規(guī)定為“強烈關(guān)注”,否則為“一般關(guān)注”,對這100名網(wǎng)友進一步統(tǒng)計得到列聯(lián)表的部分?jǐn)?shù)據(jù)如下表:
一般關(guān)注 | 強烈關(guān)注 | 合計 | |
男 | 60 | ||
女 | 5 | 40 | |
合計 | 100 |
(1)補全列聯(lián)表中數(shù)據(jù),并判斷能否有的把握認(rèn)為網(wǎng)友對此事件是否為“強烈關(guān)注”與性別有關(guān)?
(2)現(xiàn)已從男性網(wǎng)友中分層抽樣選取了6人,再從這6人中隨機選取2人,求這2人中至少有1人屬于“強烈關(guān)注”的概率.
附:,其中.
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,橢圓:的左、右焦點分別為,,點在橢圓上.
(1)若,點的坐標(biāo)為,求橢圓的方程;
(2)若點橫坐標(biāo)為,點為中點,且,求橢圓的離心率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時期的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.問物幾何?現(xiàn)有這樣一個相關(guān)的問題:將1到2020這2020個自然數(shù)中被5除余3且被7除余2的數(shù)按照從小到大的順序排成一列,構(gòu)成一個數(shù)列,則該數(shù)列各項之和為( )
A.56383B.57171C.59189D.61242
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,上頂點為,的面積為1,且橢圓的離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)點在橢圓上且位于第二象限,過點作直線,過點作直線,若直線的交點恰好也在橢圓上,求點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)為了發(fā)展旅游行業(yè),決定加強宣傳,據(jù)統(tǒng)計,廣告支出費與旅游收入(單位:萬元)之間有如下表對應(yīng)數(shù)據(jù):
2 | 4 | 5 | 6 | 8 | |
30 | 40 | 60 | 50 | 70 |
(1)求旅游收入對廣告支出費的線性回歸方程,若廣告支出費萬元,預(yù)測旅游收入;
(2)在已有的五組數(shù)據(jù)中任意抽取兩組,根據(jù)(1)中的線性回歸方程,求至少有一組數(shù)據(jù),其預(yù)測值與實際值之差的絕對值不超過的概率.(參考公式:,,其中為樣本平均值,參考數(shù)據(jù):,,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查某大學(xué)學(xué)生在周日上網(wǎng)的時間,隨機對名男生和名女生進行了不記名的問卷調(diào)查,得到了如下的統(tǒng)計結(jié)果:
表1:男生上網(wǎng)時間與頻數(shù)分布表:
上網(wǎng)時間(分鐘) | |||||
人數(shù) | 5 | 25 | 30 | 25 | 15 |
表2:女生上網(wǎng)時間與頻數(shù)分布表:
上網(wǎng)時間(分鐘) | |||||
人數(shù) | 10 | 20 | 40 | 20 | 10 |
(1)若該大學(xué)共有女生人,試估計其中上網(wǎng)時間不少于分鐘的人數(shù);
(2)完成表3的列聯(lián)表,并回答能否有的把握認(rèn)為“學(xué)生周日上網(wǎng)時間與性別有關(guān)”?
(3)從表3的男生中“上網(wǎng)時間少于分鐘”和“上網(wǎng)時間不少于分鐘”的人數(shù)中用分層抽樣的方法抽取一個容量為的樣本,再從中任取兩人,求至少有一人上網(wǎng)時間超過分鐘的概率.表3:
上網(wǎng)時間少于60分鐘 | 上網(wǎng)時間不少于60分鐘 | 合計 | |
男生 | |||
女生 | |||
合計 |
附:,其中,
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的半徑為3,圓心在軸正半軸上,直線與圓相切.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)過點的直線與圓交于不同的兩點,而且滿足,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com