5.已知向量$\overrightarrow{O{P}_{1}}$,$\overrightarrow{O{P}_{2}}$,$\overrightarrow{O{P}_{3}}$,滿足$\overrightarrow{O{P}_{1}}$+$\overrightarrow{O{P}_{2}}$+$\overrightarrow{O{P}_{3}}$=0,且|$\overrightarrow{O{P}_{1}}$|=|$\overrightarrow{O{P}_{2}}$|=|$\overrightarrow{O{P}_{3}}$|=1,則|$\overrightarrow{{P}_{1}{P}_{2}}$|=$\sqrt{3}$.

分析 先證明$\overrightarrow{O{P}_{1}}$•$\overrightarrow{O{P}_{2}}$=-$\frac{1}{2}$,由向量的數(shù)量積的定義可得,∠P1OP2=120°,即可得出結(jié)論.

解答 解:∵$\overrightarrow{O{P}_{1}}$+$\overrightarrow{O{P}_{2}}$+$\overrightarrow{O{P}_{3}}$=$\overrightarrow{0}$,
∴$\overrightarrow{O{P}_{1}}$+$\overrightarrow{O{P}_{2}}$=-$\overrightarrow{O{P}_{3}}$,
∵|$\overrightarrow{O{P}_{1}}$|=|$\overrightarrow{O{P}_{2}}$|=|$\overrightarrow{O{P}_{3}}$|=1,
∴兩邊平方,整理可得$\overrightarrow{O{P}_{1}}$•$\overrightarrow{O{P}_{2}}$=-$\frac{1}{2}$
由向量的數(shù)量積的定義可得,∠P1OP2=120°
∴|$\overrightarrow{{P}_{1}{P}_{2}}$|=$\sqrt{1+1-2×1×1×(-\frac{1}{2})}$=$\sqrt{3}$
故答案為$\sqrt{3}$.

點評 本題考查向量的數(shù)量積的定義,考查余弦定理,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.幾何體的三視圖如圖所示,該幾何體的體積為( 。
A.2B.$\frac{2}{3}$C.$\frac{4}{3}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.甲、乙兩校各有3名教師報名支教,其中甲校2男1女,乙校1男2女,若從這6名教師中任選2名,選出的2名教師來自同一學校的概率為(  )
A.$\frac{5}{9}$B.$\frac{4}{9}$C.$\frac{3}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.設f(x)=cos$\frac{1}{x}$,則f′($\frac{2}{π}$)=( 。
A.$\frac{π}{2}$B.-$\frac{π}{2}$C.$\frac{{π}^{2}}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.執(zhí)行如圖所示的程序框圖,若輸入n的值為8,則輸出S的值為( 。
A.4B.8C.10D.12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知x,y都是實數(shù),命題p:|x|<1;命題q:x2-2x-3<0,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.設等差數(shù)列{an}的前n項和為Sn,已知a1+a2+a3=a4+a5,S5=60,則a10=( 。
A.16B.20C.24D.26

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.過雙曲線${x^2}-\frac{y^2}{2}=1$的一個焦點作直線交雙曲線于A、B兩點,若|AB|=4,則這樣的直線有( 。
A.4條B.3條C.2條D.1條

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距為4,過焦點且垂直于x軸的弦長為2$\sqrt{2}$.
(Ⅰ)求橢圓E的方程;
(Ⅱ)過橢圓E右焦點的直線l交橢圓于點M,N,設橢圓的左焦點為F,求$\overrightarrow{FM}$•$\overrightarrow{FN}$的取值范圍.

查看答案和解析>>

同步練習冊答案