14.給定兩個長度為2且互相垂直的平面向量$\overrightarrow{OA}$和$\overrightarrow{OB}$,點C在以O為圓心的圓弧$\widehat{AB}$上變動,若$\overrightarrow{OC}=2x\overrightarrow{OA}+y\overrightarrow{OB}$,其中x,y∈R,則x+y的最大值是$\sqrt{5}$.

分析 點C在以O為圓心的圓弧AB上變動,則|$\overrightarrow{OC}$|=2,可以得出x和y的關(guān)系式,
再利用三角換元法求出x+y的最大值.

解答 解:由題意|$\overrightarrow{OC}$|=2,即4x2+y2=4,
∴x2+$\frac{{y}^{2}}{4}$=1;
令x=cosθ,y=2sinθ,
則x+y=cosθ+2sinθ
=$\sqrt{{1}^{2}{+2}^{2}}$($\frac{1}{\sqrt{5}}$cosθ+$\frac{2}{\sqrt{5}}$sinθ)
=$\sqrt{5}$sin(θ+φ)≤$\sqrt{5}$;
∴x+y的最大值是$\sqrt{5}$.
故答案為:$\sqrt{5}$.

點評 本題考查了向量模的運算以及利用三角換元法求最值問題,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

14.設i是虛數(shù)單位,復數(shù)1-3i的虛部是( 。
A.1B.-3iC.-3D.3i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.一同學以40m/s向上斜拋一塊石頭,拋擲方向與水平成45°角,求石頭所能達到的最高高度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=|2x-1|+|2x+a|,g(x)=x+3.
(Ⅰ)當a=-2時,求不等式f(x)<g(x)的解集;
(Ⅱ)設a>-1,且當x∈[-$\frac{a}{2}$,$\frac{1}{2}$]時,f(x)≤g(x),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.某多面體的三視圖如圖所示,則該多面體的體積為( 。
A.2B.$\frac{20}{3}$C.$\frac{22}{3}$D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.若ab=0,則a=0或b=0的否命題若ab≠0,則實數(shù)a≠0且b≠0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.兩個變量y與x的回歸模型中,分別選擇了4個不同模型,它們對應的R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\widehat{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$的值如下,其中擬合效果最好的模型是( 。
A.模型1對應的R2=0.48B.模型3對應的R2=0.15
C.模型2對應的R2=0.96D.模型4對應的R2=0.30

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.給出下列四個命題:
①在△ABC中,若C>$\frac{π}{2}$,則sinA<cosB;
②已知點A(0,3),則函數(shù)y=$\sqrt{3}$cosx-sinx的圖象上存在一點P,使得|PA|=1;
③函數(shù)y=cos2x+2bcosx+c是周期函數(shù),且周期與b有關(guān),與c無關(guān);
④設方程x+sinx=$\frac{π}{2}$的解是x1,方程x+arcsinx=$\frac{π}{2}$的解是x2,則x1+x2=π.
其中真命題的序號是①③.(把你認為是真命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.函數(shù)f(x)=2sin($\frac{π}{3}x+\frac{π}{6}$)(1<x<4)的圖象與x軸交于點A,過點A的直線l與函數(shù)的圖象交于點B、C兩點,則($\overrightarrow{OB}+\overrightarrow{OC}$)$•\overrightarrow{OA}$=(  )
A.$\frac{25}{2}$B.$\frac{25}{4}$C.$\frac{25}{8}$D.25

查看答案和解析>>

同步練習冊答案