【題目】國家規(guī)定每年的月日以后的天為當年的暑假.某鋼琴培訓機構對位鋼琴老師暑假一天的授課量進行了統(tǒng)計,如下表所示:
授課量(單位:小時) | |||||
頻數(shù) |
培訓機構專業(yè)人員統(tǒng)計近年該校每年暑假天的課時量情況如下表:
課時量(單位:天) | |||||
頻數(shù) |
(同組數(shù)據(jù)以這組數(shù)據(jù)的中間值作代表)
(1)估計位鋼琴老師一日的授課量的平均數(shù);
(2)若以(1)中確定的平均數(shù)作為上述一天的授課量.已知當?shù)厥谡n價為元/小時,每天的各類生活成本為元/天;若不授課,不計成本,請依據(jù)往年的統(tǒng)計數(shù)據(jù),估計一位鋼琴老師天暑假授課利潤不少于萬元的概率.
【答案】(1)小時;(2).
【解析】
(1)將每組的中點值乘以頻數(shù),相加后除以可得出位老師暑假一日的授課量的平均數(shù);
(2)設一位鋼琴老師每年暑假天的授課天數(shù)為,計算出每位鋼琴老師每日的利潤,結合每位鋼琴老師天暑假授課利潤不少于萬元求得的取值范圍,再結合課時量頻數(shù)表可得出所求事件的概率.
(1)估計位老師暑假一日的授課量的平均數(shù)為小時;
(2)設每年暑假天的授課天數(shù)為,則利潤為.
由,得.
一位老師暑假利潤不少于萬元,即授課天數(shù)不低于天,
又天暑假內授課天數(shù)不低于天的頻率為.
預測一位老師天暑假授課利潤不少于萬元的概率為.
科目:高中數(shù)學 來源: 題型:
【題目】某蛋糕店計劃按天生產一種面包,每天生產量相同,生產成本每個6元,售價每個8元,未售出的面包降價處理,以每個5元的價格當天全部處理完.
(1)若該蛋糕店一天生產30個這種面包,求當天的利潤y(單位:元)關于當天需求量n(單位:個,)的函數(shù)解析式;
(2)蛋糕店記錄了30天這種面包的日需求量(單位:個),整理得表:
日需求量n | 28 | 29 | 30 | 31 | 32 | 33 |
頻數(shù) | 3 | 4 | 6 | 6 | 7 | 4 |
假設蛋糕店在這30天內每天生產30個這種面包,求這30天的日利潤(單位:元)的平均數(shù)及方差;
(3)蛋糕店規(guī)定:若連續(xù)10天的日需求量都不超過10個,則立即停止這種面包的生產,現(xiàn)給出連續(xù)10天日需求量的統(tǒng)計數(shù)據(jù)為“平均數(shù)為6,方差為2”,試根據(jù)該統(tǒng)計數(shù)據(jù)決策是否一定要停止這種面包的生產?并給出理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-4:坐標系與參數(shù)方程]
已知曲線的極坐標方程為,以極點為直角坐標原點,以極軸為軸的正半軸建立平面直角坐標系,將曲線向左平移個單位長度,再將得到的曲線上的每一個點的橫坐標縮短為原來的,縱坐標保持不變,得到曲線
(1)求曲線的直角坐標方程;
(2)已知直線的參數(shù)方程為,(為參數(shù)),點為曲線上的動點,求點到直線距離的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線,過拋物線C的焦點F的直線l交拋物線C于A,B兩點,且A,B兩點在拋物線C的準線上的投影分別P、Q.
(1)已知,若,求直線l的方程;
(2)設P、Q的中點為M,請判斷PF與MB的位置關系并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設、是空間兩條不同的直線,、是空間兩個不同的平面.給出下列四個命題:
①若,,,則;
②若,,,則;
③若,,,則;
④若,,,,則.
其中正確的是__________(填序號).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市教育局為了監(jiān)控某校高一年級的素質教育過程,從該校高一年級16個班隨機抽取了16個樣本成績,制表如下:
抽取次序 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
測評成績 | 95 | 96 | 96 | 90 | 95 | 98 | 98 | 97 |
抽取次序 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
測評成績 | 97 | 95 | 96 | 98 | 99 | 96 | 99 | 96 |
令為抽取的第個學生的素質教育測評成績,,經(jīng)計算得,,,,以下計算精確到0.01.
(1)求的相關系數(shù),并回答與是否可以認為具有較強的相關性;
(2)在抽取的樣本成績中,如果出現(xiàn)了在之外的成績,就認為本學期的素質教育過程可能出現(xiàn)了異常情況,需對本學期的素質教學過程進行反思,同時對下學期的素質教育過程提出指導性的建議,從該校抽樣的結果來看,是否需對本學期的素質教學過程進行反思,同時對下學期的素質教育過程提出指導性的建議?
附:樣本的相關系數(shù),若,則可以認為兩個變量具有較強的線性相關性.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的長軸與短軸比值是2,橢圓C過點.
(1)求橢圓C的標準方程;
(2)過點作圓x2+y2=1的切線交橢圓C于A,B兩點,記△AOB(O為坐標原點)的面積為S△AOB,將S△AOB表示為m的函數(shù),并求S△AOB的最大值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com