4.已知函數(shù) f (x)=($\sqrt{3}$cosωx+sinωx)•cosωx-$\frac{{\sqrt{3}}}{2}$,其中ω>0,且f(x)的最小正周期為π.
(Ⅰ) 求ω 的值及函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ) 在銳角△ABC中,角A,B,C的對邊分別為a,b,c,若角B滿足 f ($\frac{B}{2}-\frac{π}{6}$)=$\frac{{\sqrt{3}}}{2}$,且b=3,sinA+sinC=$\frac{{2\sqrt{3}}}{3}$,求△ABC的面積.

分析 (Ⅰ)利用三角恒等變換化簡函數(shù)的解析式,再利用正弦函數(shù)的周期性和單調(diào)性求得ω 的值及函數(shù)f(x)的單調(diào)遞減區(qū)間.
(Ⅱ) 先求得B的值,再利用正弦定理求得2r,利用余弦定理求得ac的值,可得△ABC的面積$\frac{1}{2}$ac•sinB的值.

解答 解:(Ⅰ)∵已知函數(shù) f (x)=($\sqrt{3}$cosωx+sinωx)•cosωx-$\frac{{\sqrt{3}}}{2}$=$\sqrt{3}$cos2ωx+sinωxcosωx-$\frac{\sqrt{3}}{2}$
=$\sqrt{3}$•$\frac{1+cos2ωx}{2}$+$\frac{1}{2}$sin2ωx-$\frac{\sqrt{3}}{2}$=sin(2ωx+$\frac{π}{3}$),其中ω>0,
又f(x)的最小正周期為$\frac{2π}{2ω}$=π,∴ω=1,f(x)=sin(2x+$\frac{π}{3}$).
令2kπ+$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,求得kπ+$\frac{π}{12}$≤x≤kπ+$\frac{7π}{12}$,故函數(shù)f(x)的增區(qū)間為[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$],k∈Z.
(Ⅱ) 在銳角△ABC中,∵f ($\frac{B}{2}-\frac{π}{6}$)=sinB=$\frac{{\sqrt{3}}}{2}$,∴B=$\frac{π}{3}$.
設(shè)銳角△ABC外接圓的半徑為r,∵b=3,則由正弦定理可得$\frac{a}{sinA}$=$\frac{c}{sinC}$=$\frac{sinB}$=$\frac{3}{\frac{\sqrt{3}}{2}}$=2r,∴2r=2$\sqrt{3}$.
∴sinA+sinC=$\frac{a}{2r}$+$\frac{c}{2r}$=$\frac{a+c}{2r}$=$\frac{2\sqrt{3}}{3}$,∴a+c=$\frac{2\sqrt{3}}{3}$•2r=4.
再由余弦定理可得b2=9=a2+c2-2ac•cosB=(a+c)2-3ac=16-3ac,∴ac=$\frac{7}{3}$,
∴△ABC的面積為$\frac{1}{2}$ac•sinB=$\frac{1}{2}$•$\frac{7}{3}$•$\frac{\sqrt{3}}{2}$=$\frac{7\sqrt{3}}{12}$.

點評 本題主要考查三角恒等變換,正弦函數(shù)的周期性和單調(diào)性,正弦定理和余弦定理的應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)a∈R,函數(shù)f(x)=alnx-x.
(I)若f(x)無零點,求實數(shù)a的取值范圍;
(II)若f(x)有兩個相異零點x1,x2,求證:x1x2>e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.己知圓C過點($\sqrt{3}$,1),且與直線x=-2相切于點(-2,0),P是圓C上一動點,A,B為圓C與y軸的兩個交點(點A在B上方),直線PA,PB分別與直線y=-3相交于點 M,N.
(1 )求圓C的方程:
(II)求證:在x軸上必存在一個定點Q,使$\overrightarrow{QM}•\overrightarrow{QN}$的值為常數(shù),并求出這個常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知數(shù)列{an}的前n項和為Sn,a1=1,Sn+1=Sn+2an,則a10=( 。
A.511B.512C.1023D.1024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.一貨輪航行至M處,測得燈塔S在貨輪的北偏西15°,與燈塔相距80海里,隨后貨輪沿北偏東45°的方向航行了50海里到達(dá)N處,則此時貨輪與燈塔S之間的距離為(  )
A.70海里B.10   129海里
C.10    79海里D.10  89-40  3海里

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知(2x-1)+i=y-(2-y)i(x,y∈R,i是虛數(shù)單位),若復(fù)數(shù)z=x+yi,則|z|=$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=sin2$\frac{ωx}{2}$+$\frac{1}{2}$sinωx-$\frac{1}{2}$(ω>0),x∈R.若f(x)在區(qū)間(π,2π)內(nèi)沒有零點,則ω的取值范圍是( 。
A.(0,$\frac{1}{8}$]B.(0,$\frac{1}{4}$]∪[$\frac{5}{8}$,1)C.(0,$\frac{5}{8}$]D.(0,$\frac{1}{8}$]∪($\frac{1}{4}$,$\frac{5}{8}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=|x-a|.
(Ⅰ)當(dāng)a=2,解不等式f(x)≥4-|x-1|;
(Ⅱ)若f(x)≤1的解集為[0,2],$\frac{1}{m}$+$\frac{1}{2n}$=a(m>0,n>0),求證:m+2n≥4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點是F1、F2,M為橢圓上與F1、2不共線的任意一點,I為△MF1F2的內(nèi)心,延長MI交線段F1F2于點N,則|MI|:|IN|的值等于( 。
A.$\frac{a}$B.$\frac{a}{c}$C.$\frac{c}$D.$\frac{c}{a}$

查看答案和解析>>

同步練習(xí)冊答案