【題目】選修4-4:坐標系與參數(shù)方程

極坐標系與直角坐標系有相同的長度單位,以坐標原點為極點,以軸正半軸為極軸.已知曲線的極坐標方程為,曲線的極坐標方程為,射線與曲線分別交異于極點的四點.

(1)若曲線關(guān)于曲線對稱,求的值,并把曲線化成直角坐標方程;

(2)求的值.

【答案】(1) ,,.

(2) .

【解析】

(1)曲線C1的極坐標方程為ρ=2sin(θ+),展開可得:,把ρ2=x2+y2,x=ρcosθ,y=ρsinθ代入可得直角坐標方程.把C2的方程化為直角坐標方程為y=a,根據(jù)曲線C1關(guān)于曲線C2對稱,故直線y=a經(jīng)過圓心解得a,即可得出.

(2)由題意可得,|OA|,|OB|,|OC|,|OD|,代入利用和差公式即可得出.

(1),

化為直角坐標方程為.

的方程化為直角坐標方程為,因為曲線關(guān)于曲線對稱,故直線經(jīng)過圓心

解得,故的直角坐標方程為.

(2)由題意可得,,

,,

所以

.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)其中.

(1)若函數(shù)處取得極值,求實數(shù)的值;

(2)(1)的結(jié)論下,若關(guān)于的不等式,時恒成立,的值;

(3)令若關(guān)于的方程內(nèi)至少有兩個解,求出實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,

1)求的最小正周期和單調(diào)增區(qū)間

2)求圖象的對稱軸的方程和對稱中心的坐標

3)在給出的直角坐標系中,請畫出在區(qū)間上的圖象并求其值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,則輸出的值為( )

A. 2 B. C. D. -1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的定義域為集合.

1)若,求的取值范圍;

2)若存在兩個不相等負實數(shù),使得,求實數(shù)的取值范圍;

3)是否存在實數(shù),滿足對于任意,都有;對于任意的.都有,若存在,求出的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-5:不等式選講

設函數(shù)

(1)證明:

(2)若不等式的解集是非空集,求的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,動點P與兩定點A-2,0),B2,0)連線的斜率之積為-,記點P的軌跡為曲線C

I)求曲線C的方程;

II)若過點(-,0)的直線l與曲線C交于M,N兩點,曲線C上是否存在點E使得四邊形OMEN為平行四邊形?若存在,求直線l的方程,若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是定義域為的奇函數(shù),且當時, ,設”.

(1)若為真,求實數(shù)的取值范圍;

(2)設集合與集合的交集為,若為假, 為真,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

11分制乒乓球比賽,每贏一球得1分,當某局打成10:10平后,每球交換發(fā)球權(quán),先多得2分的一方獲勝,該局比賽結(jié)束.甲、乙兩位同學進行單打比賽,假設甲發(fā)球時甲得分的概率為0.5,乙發(fā)球時甲得分的概率為0.4,各球的結(jié)果相互獨立.在某局雙方10:10平后,甲先發(fā)球,兩人又打了X個球該局比賽結(jié)束.

1)求PX=2);

2)求事件X=4且甲獲勝的概率.

查看答案和解析>>

同步練習冊答案