16.執(zhí)行如圖的程序框圖,若輸入的x的值為29,則輸出的n的值為( 。
A.1B.2C.3D.4

分析 由已知中的程序語句可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計算并輸出變量x的值,模擬程序的運行過程,分析循環(huán)中各變量值的變化情況,可得答案.

解答 解:模擬程序的運行,可得
x=29,n=0
滿足條件log${\;}_{2}^{29}$<5,執(zhí)行循環(huán)體,x=29+2=31,n=1
滿足條件log${\;}_{2}^{31}$<5,執(zhí)行循環(huán)體,x=31+2=33,n=2
不滿足條件log${\;}_{2}^{33}$<5,退出循環(huán),輸出n的值為2.
故選:B.

點評 本題考查了程序框圖的應(yīng)用問題,解題時應(yīng)模擬程序框圖的運行過程,以便得出正確的結(jié)論,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列說法正確的是( 。
A.小于90°的角是銳角
B.鈍角必是第二象限角,第二象限角必是鈍角
C.第三象限的角大于第二象限的角
D.角α與角β的終邊相同,角α與角β可能不相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知曲線C1,C2的極坐標(biāo)方程分別為ρ=2cosθ,$\sqrt{2}ρsin(θ-\frac{π}{4})=\frac{{\sqrt{3}}}{2}$,射線θ=φ,$θ=φ+\frac{π}{4}$,$θ=φ-\frac{π}{4}$與曲線C1交于(不包括極點O)三點A,B,C.
(Ⅰ)求證:$|OB|+|OC|=\sqrt{2}|OA|$;
(Ⅱ)當(dāng)$φ=\frac{π}{12}$時,求點B到曲線C2上的點的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在矩形ABCD中,已知AB=a,BC=b(a>b),在AB,AD,CB,CD上,分別截取AE=AH=CF=CG=x(x>0),設(shè)四邊形EFGH的面積為y.
(1)寫出四邊形EFGH的面積y與x之間的函數(shù)關(guān)系;
(2)求當(dāng)x為何值時y取得最大值,最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知集合A={x|2≤x<7},B={x|3<x<10},C={x|x<a}.
(1)求A∪B,(∁RA)∩B;
(2)若A∩C≠∅,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖,在斜三棱柱中ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,點P為AC1上的一個動點,則點P在底面ABC上的射影H必在(  )
A.直線AB上B.直線BC上C.直線AC上D.△ABC內(nèi)部

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)y=f(x)的圖象關(guān)于x=1對稱,且在(1,+∞)上單調(diào)遞增,設(shè)$a=f(\frac{1}{2})$,b=f(2),c=f(3),則a,b,c的大小關(guān)系為(  )
A.b<a<cB.c<b<aC.b<c<aD.a<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)$f(x)=2\sqrt{3}sinωxcosωx-2{cos^2}ωx+1(ω>0)$,且y=f(x)的圖象與直線y=2的兩個相鄰公共點之間的距離為π.
(1)求函數(shù)f(x)的解析式,并求出f(x)的單調(diào)遞增區(qū)間;
(2)將函數(shù)f(x)的圖象上所有點向左平移$\frac{π}{6}$個單位,得到函數(shù)g(x)的圖象,設(shè)A,B,C為△ABC的三個內(nèi)角,若g(B)-2=0,且向量$\overrightarrow m=(cosA,cosB)$,$\overrightarrow n=(1,sinA-cosAtanB)$,求$\overrightarrow m•\overrightarrow n$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若集合A={x||2x|>1},B={x|2x2-x-1<0},則A∩B=( 。
A.{x|-1<x<2}B.$\left\{{x\left|{\frac{1}{2}<x<1}\right.}\right\}$C.$\left\{{x\left|{-\frac{1}{2}<x<1}\right.}\right\}$D.{x|x>1}

查看答案和解析>>

同步練習(xí)冊答案