7.已知曲線C1,C2的極坐標(biāo)方程分別為ρ=2cosθ,$\sqrt{2}ρsin(θ-\frac{π}{4})=\frac{{\sqrt{3}}}{2}$,射線θ=φ,$θ=φ+\frac{π}{4}$,$θ=φ-\frac{π}{4}$與曲線C1交于(不包括極點(diǎn)O)三點(diǎn)A,B,C.
(Ⅰ)求證:$|OB|+|OC|=\sqrt{2}|OA|$;
(Ⅱ)當(dāng)$φ=\frac{π}{12}$時(shí),求點(diǎn)B到曲線C2上的點(diǎn)的距離的最小值.

分析 (Ⅰ)分別表示出|OB|和|OC|,根據(jù)三角恒等變換證明即可;
(Ⅱ)求出曲線C2的直角坐標(biāo)方程,求出B的直角坐標(biāo),根據(jù)點(diǎn)到直線的距離求出其最小值即可.

解答 (Ⅰ)證明:依題意|OA|=2cosφ,$|OB|=2cos(φ+\frac{π}{4})$,$|OC|=2cos(φ-\frac{π}{4})$,
則$|OB|+|OC|=2cos(φ+\frac{π}{4})+2cos(φ-\frac{π}{4})$
=$2[cosφcos\frac{π}{4}-sinφsin\frac{π}{4}+cosφcos\frac{π}{4}+sinφsin\frac{π}{4}]=4cosφcos\frac{π}{4}$
=$2\sqrt{2}cosφ=\sqrt{2}|OA|$.
(Ⅱ)解:∵$\sqrt{2}ρsin(θ-\frac{π}{4})=\frac{{\sqrt{3}}}{2}$,
∴$ρsinθ-ρcosθ=\frac{{\sqrt{3}}}{2}$.
曲線C2的直角坐標(biāo)方程為$x-y+\frac{{\sqrt{3}}}{2}=0$.
又∵B極坐標(biāo)為(1,$\frac{π}{3}$),化為直角坐標(biāo)為$(\frac{1}{2},\frac{{\sqrt{3}}}{2})$,
∴B到曲線C2的距離為$d=\frac{{|\frac{1}{2}-\frac{{\sqrt{3}}}{2}+\frac{{\sqrt{3}}}{2}|}}{{\sqrt{2}}}=\frac{{\sqrt{2}}}{4}$.
∴所求距離的最小值為$\frac{{\sqrt{2}}}{4}$.

點(diǎn)評(píng) 本題考查了三角恒等變換,考查極坐標(biāo)和直角坐標(biāo)的轉(zhuǎn)化,考查轉(zhuǎn)化思想,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖所示的流程圖的運(yùn)行結(jié)果是20 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知m是實(shí)數(shù),命題p:函數(shù)$f(x)={log_2}({x^2}+m)$是定義域?yàn)镽的偶函數(shù),命題q:函數(shù)g(x)=(m2-2m-2)x是R上的減函數(shù),若p∨q為真命題,p∧q為假命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.我國(guó)古代名著《莊子•天下篇》中有一句名言“一尺之棰,日取其半,萬世不竭”,其意思為:一尺的木棍,每天截取一半,永遠(yuǎn)都截不完,現(xiàn)將該木棍依此規(guī)律截取,如圖所示的程序框圖的功能就是計(jì)算截取7天后所剩木棍的長(zhǎng)度(單位:尺),則①②③處可分別填入的是(  )
A.①i≤7?②s=s-$\frac{1}{i}$③i=i+1B.①i≤128?②s=s-$\frac{1}{i}$③i=2i
C.①i≤7?②s=s-$\frac{1}{2i}$③i=i+1D.①i≤128?②s=s-$\frac{1}{2i}$③i=2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖是某幾何體的三視圖,則該幾何體的俯視圖的周長(zhǎng)為(  )
A.7$+\sqrt{7}$B.4+4$\sqrt{3}$C.4+4$\sqrt{2}$D.6+2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知f(x)是定義在R上的奇函數(shù),且當(dāng)x∈(-∞,0)時(shí),不等式f(x)+xf′(x)<0成立,若a=πf(π),b=(-2)f(-2),c=f(1),則a,b,c的大小關(guān)系是( 。
A.a>b>cB.c>b>aC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知拋物線C:x2=2py(p>0)的焦點(diǎn)為F,點(diǎn)P為拋物線C上的一點(diǎn),點(diǎn)P處的切線與直線y=x平行,且|PF|=3,則拋物線C的方程為( 。
A.x2=4yB.x2=8yC.x2=6yD.x2=16y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.執(zhí)行如圖的程序框圖,若輸入的x的值為29,則輸出的n的值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.解不等式組:$\left\{\begin{array}{l}{\frac{5}{x+3}≥1}\\{{x}^{2}+x-2≥0}\end{array}\right.$.

查看答案和解析>>

同步練習(xí)冊(cè)答案