已知a,b,c是三角形的三邊,且直線ax+by+c=0與圓x2+y2=1相離,則此三角形( 。
A、是銳角三角形
B、是直角三角形
C、是鈍角三角形
D、不確定
考點(diǎn):直線與圓的位置關(guān)系
專題:計(jì)算題,直線與圓
分析:先根據(jù)ax+by+c=0與圓x2+y2=1相離,可得到圓心到直線ax+by+c=0的距離大于半徑1,進(jìn)而可得到c2>a2+b2,可得到cosC=
a2+b2-c2
2ab
<0,從而可判斷角C為鈍角,故三角形的形狀可判定.
解答: 解:由已知得,圓心到直線的距離d=
|c|
a2+b2
>1,
∴c2>a2+b2,∴cosC=
a2+b2-c2
2ab
<0,
故△ABC是鈍角三角形.
故選C.
點(diǎn)評(píng):本題主要考查三角形形狀的判定、點(diǎn)到直線的距離公式、直線與圓的位置關(guān)系.考查基礎(chǔ)知識(shí)的綜合運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(2-a)(x-1)-2lnx,(a為常數(shù),e為自然對(duì)數(shù)的底,e≈2.71828).
(1)當(dāng)a=1時(shí),求f(x)的單調(diào)區(qū)間;
(2)若f(x)>0在區(qū)間(0,
1
2
)上恒成立,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在(-∞,+∞)上的增函數(shù),若a∈R,則( 。
A、f(a)>f(2a)
B、f(a2)<f(a)
C、f(a+3)>f(a-2)
D、f(6)>f(a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若Sn=1+11+111+…+
111…1
n個(gè)1
,則Sn=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1+a•2x
2x+1
是奇函數(shù),
(1)求實(shí)數(shù)a的值
(2)判斷函數(shù)f(x)在R上的單調(diào)性,并用定義加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)點(diǎn)P(1,
2
)的直線l將圓(x-2)2+y2=4分成兩段弧,當(dāng)劣弧所對(duì)的圓心角最小時(shí),直線l的斜率k等于( 。
A、-
2
2
B、
2
2
C、-
1
2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(Ⅰ)證明:當(dāng)x>1時(shí),2lnx<x-
1
x
;
(Ⅱ)若不等式(1+
a
t
)ln(1+t)>a
對(duì)任意的正實(shí)數(shù)t恒成立,求正實(shí)數(shù)a的取值范圍;
(Ⅲ)求證:(
9
10
)19
1
e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=
ax+1
x+2
在x∈(-2,+∞)上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是( 。
A、(-∞,0)
B、(
1
2
,+∞)
C、(-∞,
1
2
D、(0,
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(x,y)的坐標(biāo)滿足
x+y-4≤0
1≤x≤2
y≥0
,則z=x+2y的最大值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案