11.交通管理部門為了解機動車駕駛員(簡稱駕駛員)對某新法規(guī)的知曉情況,對甲、乙、丙、丁四個社區(qū)做分層抽樣調(diào)查.假設(shè)四個社區(qū)駕駛員的總?cè)藬?shù)為N,其中甲社區(qū)有駕駛員96人.若在甲、乙、丙、丁四個社區(qū)抽取駕駛員的人數(shù)分別為12,21,25,43,則這四個社區(qū)駕駛員的總?cè)藬?shù)N為808 .

分析 利用分層抽樣列出方程,由此能求出這四個社區(qū)駕駛員的總?cè)藬?shù)N.

解答 解:對甲、乙、丙、丁四個社區(qū)做分層抽樣調(diào)查.
假設(shè)四個社區(qū)駕駛員的總?cè)藬?shù)為N,其中甲社區(qū)有駕駛員96人.
在甲、乙、丙、丁四個社區(qū)抽取駕駛員的人數(shù)分別為12,21,25,43,
則$\frac{12+21+25+43}{N}$=$\frac{12}{96}$,
∴這四個社區(qū)駕駛員的總?cè)藬?shù)N=808.
故答案為:808.

點評 本題考查四個社區(qū)駕駛員的總?cè)藬?shù)的求法,是基礎(chǔ)題,解題時要認真審題,注意分層抽樣的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.若x,y滿足約束條件$\left\{\begin{array}{l}x≥1\\ x+y-3≤0\\ x-y-3≤0\end{array}\right.$,設(shè)x2+y2+4x的最大值點為A,則經(jīng)過點A和B(-2,-3)的直線方程為3x-5y-9=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知2ccosA+a=2b.
(Ⅰ)求角C的值;
(Ⅱ)若c=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知數(shù)列{an},{bn}中,a1=1,an+1-(n+1)an=0,${b_1}^3+{b_2}^3+…+{b_n}^3={({{b_1}+{b_2}+…+{b_n}})^2}$且bn>0,n∈N*.記n的階乘n(n-1)(n-2)…3•2•1=n!
(1)求數(shù)列{an},{bn}的通項公式;
(2)若${c_n}=\frac{b_n}{{a{\;}_{n+1}}}$,求證:${c_1}+{c_2}+…+{c_n}≥\frac{n}{n+1}{\;}_{\;}{\;}_{\;}(n∈{N^*})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)an是${(1-\sqrt{x})^n}$的展開式中x項的系數(shù)(n=2,3,4,…),若${b_n}=\frac{{{a_{n+1}}}}{{(n+7)a_{n+2}^{\;}}}$,則bn的最大值是( 。
A.$\frac{{9-2\sqrt{14}}}{25}$B.$\frac{2}{33}$C.$\frac{3}{50}$D.$\frac{{7-2\sqrt{6}}}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.若關(guān)于x的方程lg(x2+ax)=1在x∈[1,5]上有解,則實數(shù)a的取值范圍為[-3,9].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若△OAB的垂心恰是拋物線y2=4x的焦點,其中O是原點,A,B在拋物線上,則△OAB的面積S=10$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.函數(shù)f(x)=ln(x+m)-nlnx.
(1)當(dāng)m=1,n>0時,求函數(shù)f(x)的單調(diào)減區(qū)間;
(2)n=1時,函數(shù)g(x)=(m+2x)•f(x)-am,若存在m>0,使得g(x)>0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知點(2,3)在橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$上,設(shè)A,B,C分別為橢圓的左頂點、上頂點、下頂點,且點C到直線AB的距離為$\frac{{4\sqrt{7}}}{7}b$.
(I)求橢圓C的方程;
(II)設(shè)M(x1,y1),N(x2,y2)(x1≠x2)為橢圓上的兩點,且滿足$\overrightarrow{OM}$•$\overrightarrow{ON}$=$\frac{{a}^{2}{x}_{1}{x}_{2}+^{2}{y}_{1}{y}_{2}}{{a}^{2}+^{2}}$,求證:△MON的面積為定值,并求出這個定值.

查看答案和解析>>

同步練習(xí)冊答案