分析 由V=$\frac{1}{3}×\frac{1}{2}×PA×PB×PC$=$\frac{4}{3}$,得PA=PB=PC=2
正三棱錐P-ABC的外接球,就是以PA為棱長(zhǎng)的正方體的外接球,故球的半徑為R=$\frac{1}{2}×\sqrt{{2}^{2}+{2}^{2}+{2}^{2}}=\sqrt{3}$即可求得球O的表面積.
解答 解:正三棱錐P-ABC中,PA,PB,PC兩兩互相垂直,三棱錐P-ABC體積是$\frac{4}{3}$,則V=$\frac{1}{3}×\frac{1}{2}×PA×PB×PC$=$\frac{4}{3}$,
∵PA=PB=PC,∴PA=PB=PC=2,
正三棱錐P-ABC的外接球,就是以PA為棱長(zhǎng)的正方體的外接球,故球的半徑為R=$\frac{1}{2}×\sqrt{{2}^{2}+{2}^{2}+{2}^{2}}=\sqrt{3}$,
∴球O的表面積s=4πR2=12π,
故答案為:12π.
點(diǎn)評(píng) 本題給出三棱錐的三條側(cè)棱兩兩垂直,求它的外接球的表面積,著重考查了長(zhǎng)方體對(duì)角線公式和球的表面積計(jì)算等知識(shí),屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 兩條射線及一個(gè)圓 | B. | 兩個(gè)點(diǎn) | ||
C. | 一條線段及一個(gè)圓 | D. | 一條直線及一個(gè)圓 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{{{{(n+1)}^2}}}$ | B. | $\frac{2}{n(n+1)}$ | C. | $\frac{1}{{{2^n}-1}}$ | D. | $\frac{1}{2n-1}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3n2 | B. | 3n2+3n | C. | 6n+1 | D. | 6n-1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com