已知命題p:x∈R,f(x)=x2-2x+4>m恒成立;q:f(x)=log5m-2x上的單調(diào)增函數(shù).若p或q為真,p且q為假,求實(shí)數(shù)m的取值范圍.
考點(diǎn):復(fù)合命題的真假
專題:簡(jiǎn)易邏輯
分析:先將命題p,q化簡(jiǎn),然后由p或q為真,p且q為假,則命題p,q一真一假,分情況討論即可.
解答: 解:命題p:x∈R,f(x)=x2-2x+4>m恒成立;則x∈R時(shí),f(x)=x2-2x+4=(x-1)2+3≥3,若命題p成立,則m<3,
命題q:f(x)=log5m-2x上的單調(diào)增函數(shù).則5m-2>1,解得m>
3
5

由條件p或q為真,p且q為假,則命題p,q一真一假,
①若p真q假,則m<3且m≤
3
5
,則m≤
3
5
,又5m-2為指數(shù)函數(shù)底數(shù),5m-2>0,且5m-2≠1即m>
2
5
且m≠
3
5
,則此時(shí)m的取值范圍是
2
5
<m<
3
5

②若p假q真,則m≥3且m>
3
5
,則m≥3,
綜上,m的取值范圍是(
2
5
,
3
5
)∪[3,+∞)
點(diǎn)評(píng):易錯(cuò)點(diǎn)容易忽略m為指數(shù)函數(shù)底數(shù)的要求.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將函數(shù)y=f(x)的圖象按向量
a
=(-
π
12
,2)平移后,得到函數(shù)g(x)=sin(2x+
π
6
)+2的圖象,則函數(shù)f(x)的解析式為( 。
A、y=sin2x
B、y=sin(2x+
π
3
C、y=sin(2x+
π
12
D、y=sin(2x-
π
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)平面向量
m
=(cos2
x
2
3
sinx),
n
=(2,1),函數(shù)f(x)=
m
n

(1)當(dāng)x∈[-
π
3
,
π
2
]時(shí),求函數(shù)f(x)的單調(diào)減區(qū)間;
(2)銳角△ABC的三個(gè)內(nèi)角ABC對(duì)應(yīng)一邊分別是a,b,c,若f(c-
π
6
)=
2
+1,且b=4,△ABC的面積等于b,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“a=-2”是“直線l1:ax-y+3=0與l2:2x-(a+1)y+4=0互相平行”的(  )
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是定義在R上的奇函數(shù),當(dāng)x<0時(shí),f(x)=x-e-x(e為自然數(shù)的底數(shù)),則f(ln6)的值為( 。
A、ln6+6
B、ln6-6
C、-ln6+6
D、-ln6-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正實(shí)數(shù)x,y滿足x2+y2+xy=1,則x+y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα-cosα=2sinα•cosα,則sin2α的值為( 。
A、
-1-
5
2
B、
-1+
5
2
C、
-1+
5
4
D、
-1-
5
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U=R,函數(shù)y=
1+x
+log3
(4-x)的定義域?yàn)榧螦.
(1)求集合A;
(2)集合B={x|2<x≤10},求韋恩圖中陰影部分表示的集合C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(1,1),B、C為拋物線y2=x上任意兩點(diǎn),∠ABC=90°,求AC的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案