10.已知p,q是簡單命題,那么“p∧q是真命題”是“¬p是真命題”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 根據(jù)復合命題之間的關系結合充分條件和必要條件的定義即可得到結論.

解答 解:若p∧q是真命題,則p,q都是真命題,則¬p是假命題,即充分性不成立,
若¬p是真命題,則p是假命題,此時p∧q是假命題,即必要性不成立,
故“p∧q是真命題”是“¬p是真命題”的既不充分也不必要條件,
故選:D.

點評 本題主要考查充分條件和必要條件的判斷,根據(jù)復合命題真假之間的關系是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

20.已知函數(shù)f(x)=|sinx|(x∈[-π,π]),g(x)為[-4,4]上的奇函數(shù),且$g(x)=\left\{{\begin{array}{l}{-2x(0<x≤2)}\\{4x-12(2<x≤4)}\end{array}}\right.$,設方程f(f(x))=0,f(g(x))=0,g(g(x))=0的實根的個數(shù)分別為m、n、t,則m+n+t=(  )
A.9B.13C.17D.21

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.將正整數(shù)排成一個三角形數(shù)陣:按照如圖排列的規(guī)律,則第20行從左到右的第4個數(shù)為194.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.若等腰△ABC的周長為$4\sqrt{2}$,則△ABC腰AB上的中線CD的長的最小值是$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,在△ABC中,∠C為直角,AC=BC=4.沿△ABC的中位線DE,將平面ADE折起,使得∠ADC=90°,得到四棱錐A-BCDE.
(Ⅰ)求證:BC⊥平面ACD;
(Ⅱ)求三棱錐E-ABC的體積;
(Ⅲ)M是棱CD的中點,過M作平面α與平面ABC平行,設平面α截四棱錐A-BCDE所得截面面積為S,試求S的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.函數(shù)f(x)=sin$\frac{π}{6}$xcos$\frac{π}{6}$x-$\sqrt{3}$sin2$\frac{π}{6}$x在區(qū)間[-1,a]上至少取得2個最大值,則正整數(shù)a的最小值是( 。
A.8B.9C.11D.12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.某廠擬生產(chǎn)甲、乙兩種適銷產(chǎn)品,每件銷售收入分別為3000元,2000元.甲、乙產(chǎn)品都需要在A、B兩種設備上加工,在每臺A、B設備上加工一件甲所需工時分別為1h,2h,加工一件乙設備所需工時分別為2h,1h.A、B兩種設備每月有效使用臺時數(shù)分別為400h和500h,分別用x,y表示計劃每月生產(chǎn)甲,乙產(chǎn)品的件數(shù).
(Ⅰ)用x,y列出滿足生產(chǎn)條件的數(shù)學關系式,并畫出相應的平面區(qū)域;
(Ⅱ)問分別生產(chǎn)甲、乙兩種產(chǎn)品各多少件,可使收入最大?并求出最大收入.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.一個幾何體,其三視圖如圖所示,則該幾何體的體積為$\frac{\sqrt{2}}{6}π$+$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知奇函數(shù)f(x)的定義域為R,且f(x+$\frac{7}{2}$)=$\frac{1}{f(x)}$,f(4)>1,f(2012)=$\frac{2a+3}{a-1}$,則實數(shù)a的取值范圍是-$\frac{2}{3}$<a<1.

查看答案和解析>>

同步練習冊答案