已知拋物線方程為,過點作直線與拋物線交于兩點,,過分別作拋物線的切線,兩切線的交點為.
(1)求的值;
(2)求點的縱坐標(biāo);
(3)求△面積的最小值.
(1)-8;(2)-2:(3).
【解析】
試題分析:
解題思路:(1)聯(lián)立直線與拋物線方程,整理得到關(guān)于的一元二次方程,利用根與系數(shù)的關(guān)系求兩根之積即可;(2)由導(dǎo)數(shù)的幾何意義求切線方程,聯(lián)立方程,解方程組即得P點縱坐標(biāo);(3)求弦長和面積,再利用基本不等式求最值.
規(guī)律總結(jié):直線與拋物線的位置關(guān)系,是高考數(shù)學(xué)的重要題型,其一般思路是聯(lián)立直線與拋物線的方程,整理得到關(guān)于或的一元二次方程,采用“設(shè)而不求”的方法進行解答,綜合型較強.
試題解析:(1)由已知直線的方程為,代入得,,∴,.
(2)由導(dǎo)數(shù)的幾何意義知過點的切線斜率為,
∴切線方程為,化簡得 ①
同理過點的切線方程為 ②
由,得, ③
將③代入①得,∴點的縱坐標(biāo)為.
(3)設(shè)直線的方程為,
由(1)知,,
∵點到直線的距離為,
線段的長度為
. ,
當(dāng)且僅當(dāng)時取等號,∴△面積的最小值為.
考點:直線與拋物線的位置關(guān)系.
科目:高中數(shù)學(xué) 來源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:10-6幾何概型(解析版) 題型:選擇題
[2012·北京高考]設(shè)不等式組,表示平面區(qū)域為D,在區(qū)域D內(nèi)隨機取一個點,則此點到坐標(biāo)原點的距離大于2的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考1-3簡單邏輯聯(lián)結(jié)詞、全稱量詞與存在量詞(解析版) 題型:選擇題
[2014·孝感統(tǒng)考]已知命題p:?x∈R,使sinx=;命題q:?x∈R,都有x2+x+1>0.給出下列結(jié)論:
①命題p∧q是真命題;②命題(p)∨q是真命題;③命題(p)∨(q)是假命題;④命題p∧(q)是假命題.
其中正確的是( )
A.②③ B.②④ C.③④ D.①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆黑龍江省高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
下列函數(shù)中,既是偶函數(shù),又在區(qū)間(1,2)內(nèi)是增函數(shù)的為( ).
A.y=cos2x,x∈R B.y=log2|x|,x∈R且x≠0)
C.y=,x∈R D.y=x3+1,x∈R
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆黑龍江省高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
已知集合A=B=則( ).
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆黑龍江省高二下學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:填空題
若奇函數(shù)在上單調(diào)遞減,則不等式的解集是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆黑龍江省高二下學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知函數(shù)的周期為2,當(dāng)∈[-1,1]時,那么函數(shù)的圖象與函數(shù)的圖象的交點共有( ).
A、10個 B、9個 C、8個 D、1個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆黑龍江省高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題
函數(shù)f(x)=x3-3x2+1的遞增區(qū)間是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆黑龍江省高二下學(xué)期期末理科數(shù)學(xué)試卷(解析版) 題型:填空題
函數(shù)是定義在R上的奇函數(shù),當(dāng)時,,則在上所有零點之和為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com