20.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線與y=$\sqrt{3}$x-1平行,且它的一個(gè)焦點(diǎn)在拋物線y2=8$\sqrt{2}$x的準(zhǔn)線上,則雙曲線的方程為$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{6}$=1.

分析 求出拋物線的準(zhǔn)線方程,得到c的值,結(jié)合雙曲線漸近線與直線的平行關(guān)系求出a,b的大小即可.

解答 解:拋物線y2=8$\sqrt{2}$x的準(zhǔn)線方程為x=2$\sqrt{2}$,
∵雙曲線的一個(gè)焦點(diǎn)在拋物線y2=8$\sqrt{2}$x的準(zhǔn)線上,
∴c=2$\sqrt{2}$,
雙曲線的漸近線方程為y=±$\frac{a}$x,
∵雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線與y=$\sqrt{3}$x-1平行,
∴$\frac{a}$=$\sqrt{3}$,平方得b2=3a2=c2-a2,
即c2=4a2=8,
則a2=2,b2=6,
即雙曲線的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{6}$=1,
故答案為:$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{6}$=1,

點(diǎn)評(píng) 本題主要考查雙曲線標(biāo)準(zhǔn)方程的求解,根據(jù)條件求出a,b,c是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知x=2+i,設(shè)M=1-${C}_{4}^{1}$x+${C}_{4}^{2}$x2-${C}_{4}^{3}$x3+${C}_{4}^{4}$x4,則M的值為-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.秦九韶是我國(guó)南宋時(shí)期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項(xiàng)式求值的秦九韶算法,至今仍是比較先進(jìn)的算法,如圖所示的程序框圖給出了利用秦九韶算法求某多項(xiàng)式值的一個(gè)實(shí)例,若輸入n,x的值分別為4,3,則輸出v的值為( 。
A.20B.61C.183D.548

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.將函數(shù)y=1+sin(2x+$\frac{π}{4}$)的圖象向下平移1個(gè)單位,再向右平移$\frac{π}{8}$個(gè)單位,所得到的函數(shù)解析式是(  )
A.y=sin(2x+$\frac{π}{8}$)B.y=sin(2x+$\frac{3π}{8}$)C.y=cos2xD.y=sin2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=ex,g(x)=mx+n.
(1)設(shè)h(x)=f(x)-g(x).若函數(shù)h(x)在x=0處的切線過(guò)點(diǎn)(1,0),求m+n的值;
(2)設(shè)函數(shù)r(x)=$\frac{1}{f(x)}$+$\frac{nx}{g(x)}$,且n=4m(m>0),當(dāng)x≥0時(shí),比較r(x)與1的大小關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.兩直線ρsin(θ+$\frac{π}{4}$)=2011,ρsin(θ-$\frac{π}{4}$)=2012的位置關(guān)系是(  )
A.平行B.垂直C.相交D.重合

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在三棱錐P-ABC中,F(xiàn),M分別是棱PB,AC的中點(diǎn),E為PC上一動(dòng)點(diǎn).
(1)若AF∥平面MEB,試確定點(diǎn)E的位置,并證明你的結(jié)論.
(2)在滿足(1)的條件下,求三棱錐C-MEB與三棱錐C-PAB的體積比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知奇函數(shù)f(x)的定義域?yàn)镽,且當(dāng)x>0時(shí),f(x)=x2-3x+2,若函數(shù)y=f(x)-a有3個(gè)零點(diǎn),則實(shí)數(shù)a的值是±$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知復(fù)數(shù)z(1+i)=2i(i是虛數(shù)單位),則復(fù)數(shù)z的虛部是(  )
A.iB.-iC.1D.-1

查看答案和解析>>

同步練習(xí)冊(cè)答案