分析 (1)設等比數(shù)列{an}的公比為q≠1,由S3=7,S6=63,可得$\frac{{a}_{1}(1-{q}^{3})}{1-q}$=7,$\frac{{a}_{1}(1-{q}^{6})}{1-q}$=63,化簡1+q3=9,解得q.
(2)f(n)=$\frac{{a}_{n}}{{a}_{n}+{2}^{1006}}$=$\frac{{2}^{n-1}}{{2}^{n-1}+{2}^{1006}}$,可得f(n)+f(2014-n)=1,即可數(shù)列{f(n)}的前2013項之和T2013.
解答 解:(1)設等比數(shù)列{an}的公比為q≠1,∵S3=7,S6=63,∴$\frac{{a}_{1}(1-{q}^{3})}{1-q}$=7,$\frac{{a}_{1}(1-{q}^{6})}{1-q}$=63,
∴1+q3=9,解得q=2.
∴a1=1,∴an=2n-1.
(2)f(n)=$\frac{{a}_{n}}{{a}_{n}+{2}^{1006}}$=$\frac{{2}^{n-1}}{{2}^{n-1}+{2}^{1006}}$,∴f(n)+f(2014-n)=$\frac{{2}^{n-1}}{{2}^{n-1}+{2}^{1006}}$+$\frac{{2}^{2013-n}}{{2}^{2013}+{2}^{1006}}$=$\frac{{2}^{n-1}}{{2}^{n-1}+{2}^{1006}}$+$\frac{{2}^{2013-n}•{2}^{n-1}}{{2}^{2013-n}•{2}^{n-1}+{2}^{1006}•{2}^{n-1}}$=1,
∴數(shù)列{f(n)}的前2013項之和T2013=$\frac{1}{2}×(1×2013)$=$\frac{2013}{2}$.
點評 本題考查了等比數(shù)列的通項公式與求和公式、分組求和方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{6}}{3}$ | B. | $\frac{2\sqrt{3}}{3}$ | C. | $\frac{\sqrt{6}}{3}$或2 | D. | $\frac{2\sqrt{3}}{3}$或2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com