1.求證:
(1)a2+b2+c2≥ab+bc+ac
(2)$\sqrt{6}$+$\sqrt{5}$>$\sqrt{7}$+2.

分析 (1)利用重要不等式,通過綜合法證明即可.
(2)利用分析法,通過兩側(cè)平方,證明即可.

解答 證明(1)因?yàn)閍2+b2≥2ab,a2+c2≥2ac,b2+c2≥2bc,所以2(a2+b2+c2)≥2(ab+bc+ac),
即a2+b2+c2≥ab+bc+ac.
(2)要證明$\sqrt{6}$+$\sqrt{5}$>$\sqrt{7}$+2,只需證明${(\sqrt{6}+\sqrt{5})}^{2}>(\sqrt{7}+2)^{2}$,
即證明6+5+2$\sqrt{30}$>7+4+4$\sqrt{7}$,即證明$\sqrt{30}>2\sqrt{7}$,也就是證明:30>28,這是顯然成立的,
所以$\sqrt{6}$+$\sqrt{5}$>$\sqrt{7}$+2成立.

點(diǎn)評 本題考查分析法與綜合法的應(yīng)用,重要不等式以及分析法證明問題的方法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知圓心在直線y=-2x上,且圓過點(diǎn)(2,-1),與直線y=x-1相切,求該圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.用數(shù)學(xué)歸納法證明:1+$\frac{1}{2}+\frac{1}{3}$+…+$\frac{1}{{2}^{n}-1}$<n(n>1,n∈N*),在第二步證明從n=k到n=k+1成立時,左邊增加的項(xiàng)數(shù)是$\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+…+$\frac{1}{{2}^{k+1}-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若關(guān)于x的不等式x2-2kx+k>0的解集為R,則實(shí)數(shù)k的取值范圍是(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=2πx2的導(dǎo)數(shù)是( 。
A.f′(x)=4πxB.f′(x)=4π2xC.f′(x)=2π2xD.f′(x)=πx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)函數(shù)f(x)=$\frac{x+2a+3}{{{x^2}+8}}$為奇函數(shù),則實(shí)數(shù)a=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若直線mx+2ny-4=0(m、n∈R,m≠n)始終平分圓x2+y2-4x-2y-4=0的周長,則mn的取值范圍是( 。
A.(0,1)B.(-1,0)C.(-∞,1)D.(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)y=-x-cosx在$[{π,\frac{3π}{2}}]$上的最大值是( 。
A.$\frac{3π}{2}$B.-π-1C.-π+1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某市5年中的煤氣消耗量與使用煤氣戶數(shù)的歷史資料如下:
年份20062007200820092010
x用戶(萬戶)11.11.51.61.8
y(萬立方米)6791112
(1)檢驗(yàn)是否線性相關(guān);
(2)求回歸方程;
(3)若市政府下一步再擴(kuò)大兩千煤氣用戶,試預(yù)測該市煤氣消耗量將達(dá)到多少?
附:b=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{{{\sum_{i=1}^n{x_i^2-n\overline x}}^2}}}$,a=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

同步練習(xí)冊答案