9.若關于x的不等式x2-2kx+k>0的解集為R,則實數(shù)k的取值范圍是(0,1).

分析 根據(jù)不等式x2-2kx+k>0的解集為R時△<0,
列不等式求解集即可.

解答 解:關于x的不等式x2-2kx+k>0的解集為R,
∴△=4k2-4k<0,
解得0<k<1,
∴實數(shù)k的取值范圍是(0,1).
故答案為:(0,1).

點評 本題考查了一元二次不等式恒成立的應用問題,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.2016年袁隆平的超級雜交水稻再創(chuàng)畝產(chǎn)量世界紀錄,為了測試水稻生長情況,專家選取了甲、乙兩塊地,從這兩塊地中隨機各抽取10株水稻樣本,測量他們的高度,獲得的高度數(shù)據(jù)的莖葉圖如圖所示:
(1)根據(jù)莖葉圖判斷哪塊田的平均高度較高;
(2)計算甲乙兩塊地株高方差;
(3)現(xiàn)從乙地高度不低于133cm的樣本中隨機抽取兩株,求高度為136cm的樣本被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.函數(shù)f(x)=-x(x-a)
(1)當a=2時,求函數(shù)f(x)單調區(qū)間;
(2)求函數(shù)f(x)在x∈[-1,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知0<β<$\frac{π}{4}$<α<$\frac{3π}{4}$,cos($\frac{π}{4}$-α)=$\frac{3}{5}$,sin($\frac{3π}{4}$+β)=$\frac{5}{13}$,求sin(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的右焦點為F(c,0)且a>b>c>0,設短軸的兩端點為D,H,原點O到直線DF的距離為$\frac{\sqrt{3}}{2}$,過原點和x軸不重合的直線與橢圓E相交于C,G兩點,且|$\overrightarrow{GF}$|+|$\overrightarrow{CF}$|=4.
(1)求橢圓E的方程;
(2)設O為坐標原點,過點P(0,1)的動直線與橢圓E交于A,B兩點,是否存在常數(shù)λ,使得$\overrightarrow{OA}$•$\overrightarrow{OB}$+λ$\overrightarrow{PA}$•$\overrightarrow{PB}$為定值?求λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.若α的終邊在第一、三象限的角平分線上,則$\frac{sinα}{\sqrt{1-si{n}^{2}α}}$+$\frac{\sqrt{1-co{s}^{2}α}}{cosα}$=±2tanα.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.求證:
(1)a2+b2+c2≥ab+bc+ac
(2)$\sqrt{6}$+$\sqrt{5}$>$\sqrt{7}$+2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.在平面直角坐標系xOy中,以坐標原點O為圓心的圓與直線l:$\sqrt{3}x+y-4=0$相切,且圓O與坐標軸x正半軸交于A,y正半軸交于B,點P為圓O上異于A,B的任意一點.
(Ⅰ)求圓O的方程;
(Ⅱ)求$\overrightarrow{PA}•\overrightarrow{PB}$的最大值及點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知數(shù)列{an}的通項公式是關于n的一次函數(shù),a3=7,a7=19,則a10的值為( 。
A.26B.28C.30D.32

查看答案和解析>>

同步練習冊答案