已知函數(shù)f(x)=
1
x+1
,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)An(n,f(n))(n∈N*).若記直線OAn的傾斜角為θn,則tanθ1+tanθ2+…+tanθn=(  )
A、
n
n+1
B、
1
n+1
C、
1
n
D、
n-1
n
考點(diǎn):兩角和與差的正切函數(shù)
專題:計(jì)算題,三角函數(shù)的求值
分析:由題意可得,An(n,
1
n+1
),則直線OAn的斜率tanθn=
1
n(n+1)
=
1
n
-
1
n+1
,用裂項(xiàng)法對(duì)tanθ1+tanθ2+…+tanθn進(jìn)行求和,可得結(jié)果.
解答: 解:由題意可得,An(n,
1
n+1
),
∴直線OAn的斜率tanθn=
1
n(n+1)
=
1
n
-
1
n+1
,
∴tanθ1+tanθ2+…+tanθn=(1-
1
2
)+(
1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
n
-
1
n+1

=1-
1
n+1
=
n
n+1

故選A
點(diǎn)評(píng):本題主要考查直線的斜率公式的應(yīng)用,用裂項(xiàng)法進(jìn)行數(shù)列求和,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方體ABCD-A1B1C1D1中,E為DD1的中點(diǎn)
(Ⅰ)求證:直線BD1⊥AC;
(Ⅱ)求異面直線BD1與CE所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以下四個(gè)命題中錯(cuò)誤的是( 。
A、已知隨機(jī)變量X~N(2,9)P(X>c+1)=P(X<c+1),則c=1
B、兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)r的絕對(duì)值越接近于1
C、在回歸直線方程
y
=0.2x+12中,當(dāng)解釋變量x每增加一個(gè)單位時(shí),預(yù)報(bào)變量
y
平均增加0.2個(gè)單位
D、對(duì)分類變量X與Y的隨機(jī)變量K2的觀測(cè)值k,k越小,“X與Y有關(guān)系”的把握程度越大

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠A、∠B、∠C的對(duì)邊分別是a、b、c,且tanC+3tanB=0.
(1)求∠A的最大值;
(2)若b2+2a=c2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義向量運(yùn)算“⊙”如下:
a
=(m,n),
b
=(p,q),令
a
b
=mq-np,下面錯(cuò)誤的是(  )
A、若
a
b
共線,則
a
b
=0
B、
a
b
=
b
a
C、對(duì)任意的λ∈R,有(λ
a
)⊙
b
=λ(
a
b
D、(
a
b
)2+(
a
b
)2=|
a
|2|
b
|2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知長(zhǎng)方體ABCD-A1B1C1D1中,AB=BC=1,BB1=2,連結(jié)BC1,過(guò)點(diǎn)B1作BC1的垂線交CC1于E.
(1)求證:AC1⊥平面EB1D1;
(2)二面角E-B1D1-C1的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(-1,0)、B(1,0),動(dòng)點(diǎn)C滿足條件:△ABC的周長(zhǎng)為2+2
2
.則動(dòng)點(diǎn)C的軌跡方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若橢圓
x2
10
+
y2
m
=1與雙曲線x2-
y2
b
=1有相同的焦點(diǎn),且橢圓與雙曲線交于點(diǎn)P(
10
3
,y),則實(shí)數(shù)b的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義域?yàn)閧x|x∈R,x>0}的函數(shù)y=f(x)的導(dǎo)函數(shù)為y=
1
x
,直線l:x-ey+e=0是曲線y=f(x)的一條切線,則函數(shù)y=f(x)的解析式為
 
.(e是自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

同步練習(xí)冊(cè)答案