【題目】已知是方程的兩根, 數(shù)列是公差為正的等差數(shù)列,數(shù)列的前項和為,且.

(1)求數(shù)列的通項公式;

(2)記,求數(shù)列的前項和.

【答案】(1);(2).

【解析】試題分析:(1)根據(jù)數(shù)列為等差數(shù)列,且是方程的兩根,利用韋達(dá)定理出關(guān)于首項、公差的方程組,解方程組可得的值,從而可得數(shù)列的通項公式,由,兩式相減,化簡可得是以 為公比的等比數(shù)列,根據(jù)等比數(shù)列的定義可寫出的通項公式;(2)由(1)可得,利用錯位相減法求和即可得數(shù)列的前項和.

試題解析:(1)由.且

, ,

中,令當(dāng)時,T=,

兩式相減得,.

(2) ,

,,

=2

= .

方法點睛】本題主要考查等比數(shù)列和等差數(shù)列的通項以及錯位相減法求數(shù)列的的前 項和,屬于中檔題.一般地,如果數(shù)列是等差數(shù)列, 是等比數(shù)列,求數(shù)列的前項和時,可采用錯位相減法求和,一般是和式兩邊同乘以等比數(shù)列的公比,然后作差求解, 在寫出的表達(dá)式時應(yīng)特別注意將兩式錯項對齊以便下一步準(zhǔn)確寫出的表達(dá)式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于f(x)=4sin (xR),有下列命題

①由f(x1)=f(x2)=0可得x1x2π的整數(shù)倍;

yf(x)的表達(dá)式可改寫成y=4cos;

yf(x)圖象關(guān)于對稱;

yf(x)圖象關(guān)于x=-對稱.

其中正確命題的序號為________(將你認(rèn)為正確的都填上)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《最強(qiáng)大腦》是江蘇衛(wèi)視推出國內(nèi)首檔大型科學(xué)類真人秀電視節(jié)目,該節(jié)目集結(jié)了國內(nèi)外最頂尖的腦力高手,堪稱腦力界的奧林匹克,某校為了增強(qiáng)學(xué)生的記憶力和辨識力也組織了一場類似《最強(qiáng)大腦》的PK賽,A、B兩隊各由4名選手組成,每局兩隊各派一名選手PK,除第三局勝者得2分外,其余各局勝者均得1分,每局的負(fù)者得0分,假設(shè)每局比賽兩隊選手獲勝的概率均為0.5,且各局比賽結(jié)果相互獨立.
(1)求比賽結(jié)束時A隊的得分高于B隊的得分的概率;
(2)求比賽結(jié)束時B隊得分X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù),若,則稱的“不動點”;若,則稱的“穩(wěn)定點”.函數(shù)的“不動點”和“穩(wěn)定點”的集合分別記為,即,

)設(shè)函數(shù),求集合

)求證:

)設(shè)函數(shù),且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,,為線段的中點,為線段上一點.

(1)求證:;

(2)求證:平面平面;

(3)當(dāng)平面時,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,平面五邊形ABCDE中,AB∥CD,∠BAD=90°,AB=2,CD=1,△ADE是邊長為2的正三角形.現(xiàn)將△ADE沿AD折起,得到四棱錐E﹣ABCD(如圖2),且DE⊥AB.
(Ⅰ)求證:平面ADE⊥平面ABCD;
(Ⅱ)求平面BCE和平面ADE所成銳二面角的大小;
(Ⅲ)在棱AE上是否存在點F,使得DF∥平面BCE?若存在,求 的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,求的值域;

(2)當(dāng)時,函數(shù)的圖象關(guān)于對稱,求函數(shù)的對稱軸.

(3)若圖象上有一個最低點,如果圖象上每點縱坐標(biāo)不變,橫坐標(biāo)縮短到原來的倍,然后向左平移1個單位可得的圖象,又知的所有正根從小到大依次為,且,求的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,,,,分別為棱的中點.

(1)求證:∥平面

(2)若異面直線 所成角為,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,四邊形ABCD中AC⊥BD,CE=2AE=2BE=2DE=2,將四邊形ABCD沿著BD折疊,得到圖2所示的三棱錐A﹣BCD,其中AB⊥CD.
(1)證明:平面ACD⊥平面BAD;
(2)若F為CD中點,求二面角C﹣AB﹣F的余弦值.

查看答案和解析>>

同步練習(xí)冊答案