8.若x6=a0+a1(2x-1)+a2(2x-1)2+…+a6(2x-1)6,則a2=$\frac{15}{64}$.

分析 由x6=$\frac{1}{{2}^{6}}$(2x-1+1)6,利用二項式定理展開即可得出.

解答 解:x6=$\frac{1}{{2}^{6}}$(2x-1+1)6=$\frac{1}{{2}^{6}}$$[1+{∁}_{6}^{1}(2x-1)+{∁}_{6}^{2}(2x-1)^{2}$+…+(2x-1)6]
=$\frac{1}{{2}^{6}}$+$\frac{{∁}_{6}^{1}}{{2}^{6}}$(2x-1)+$\frac{{∁}_{6}^{2}}{{2}^{6}}$(2x-1)2+…,
∴a2=$\frac{{∁}_{6}^{2}}{{2}^{6}}$=$\frac{15}{64}$.
故答案為:$\frac{15}{64}$.

點評 本題考查了二項式定理的應(yīng)用,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.為了研究家用轎車在高速公路上的車速情況,交通部門對100名家用轎車駕駛員進(jìn)行調(diào)查,得到其在高速公路上行駛時的平均車速情況為:在55名男性駕駛員中,平均車速超過100km/h的有45人,不超過100km/h的有10人;在45名女性駕駛員中,平均車速超過100km/h的有25人,不超過100km/h的有20人.
(Ⅰ)完成下面的列聯(lián)表,并判斷是否有99.5%的把握認(rèn)為平均車速超過100km/h與性別有關(guān);
平均車速超過100km/h人數(shù)平均車速不超過100km/h人數(shù)合計
男性駕駛?cè)藬?shù)451055
女性駕駛?cè)藬?shù)252045
合計7030100
(Ⅱ)在被調(diào)查的駕駛員中,按分層抽樣的方法從平均車速不超過100km/h的人中抽取6人,再從這6人中采用簡單隨機(jī)抽樣的方法隨機(jī)抽取2人,求這2人恰好為1名男生、1名女生的概率.
參考公式與數(shù)據(jù):k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(k2≥k00.1500.1000.0500.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,角A,B,C的對邊分別為a,b,c,滿足$\sqrt{3}a=b(sinC+\sqrt{3}cosC)$.
(1)求∠ABC;
(2)若$∠A=\frac{π}{3}$,D為△ABC外一點,DB=2,DC=1,求四邊形ABDC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在($\sqrt{3}$x+$\root{3}{2}$)100展開式所得的x的多項式中,系數(shù)為有理數(shù)的項有( 。
A.16項B.17項C.24項D.50項

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.關(guān)于x的不等式1og${\;}_{\frac{1}{2}}$(x2-8)>1og${\;}_{\frac{1}{2}}$2x的解集為($2\sqrt{2},4$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.用向量法證明以下各題:
(1)三角形三條中線共點;
(2)P是△ABC重心的充要條件是$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)$f(x)=2sin({2x-\frac{π}{3}})-1$,在$[{0,\frac{π}{2}}]$隨機(jī)取一個實數(shù)a,則f(a)>0的概率為( 。
A.$\frac{5}{6}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某市每年中考都要舉行實驗操作考試和體能測試,初三(1)班共有30名學(xué)生,如圖表格為該班學(xué)生的這兩項成績,表中實驗操作考試和體能測試都為優(yōu)秀的學(xué)生人數(shù)為6人.由于部分?jǐn)?shù)據(jù)丟失,只知道從這班30人中隨機(jī)抽取一個,實驗操作成績合格,且體能測試成績合格或合格以上的概率是$\frac{1}{6}$.
實驗操作
不合格合格良好優(yōu)秀
體能測試不合格0111
合格021b
良好1a24
優(yōu)秀1136
(Ⅰ)試確定a,b的值;
(Ⅱ)從30人中任意抽取3人,設(shè)實驗操作考試和體能測試成績都是良好或優(yōu)秀的學(xué)生人數(shù)為X,求隨機(jī)變量X的分布列及數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在平面四邊形ABCD中,AB=3,AC=12,cos∠BAC=$\frac{29}{36}$,$\overrightarrow{AD}$•$\overrightarrow{CD}$=0,則BD的最大值為10.

查看答案和解析>>

同步練習(xí)冊答案