【題目】已知兩定點,,點P是平面內的動點,且,記動點P的軌跡W.

1)求動點P的軌跡W的方程;

2)過點作兩條相垂直的直線分別交軌跡于G,H,M,N四點.設四邊形GMHN面積為S,求的取值范圍.

【答案】1;(2

【解析】

1)設點,由,逐步化簡可得,

,即可得到本題答案;

2)分直線斜率不存在和不存在兩種情況考慮,當直線斜率存在時,因為,聯(lián)立直線方程與橢圓方程,利用韋達定理,將k表示出來,逐步化簡,即可得到本題答案.

解:(1)設,則

,

由于,即,設,,則,則P點的軌跡是以,為焦點且長軸長為4的橢圓,

所以,動點P的軌跡W的方程為:;

2)當其中一條直線斜率不存在時,另一條斜率為零,不妨設斜率不存在,則,,故;

、兩直線斜率都存在時,則設的斜率分別為k,則:,

的方程為:,由得:,

易知恒成立,設,,則,

故:,

同理得:,

由題:四邊形GMHN面積,故:

,則

故:,則的取值范圍為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線過點,是拋物線上不同兩點,且(其中是坐標原點),直線交于點,線段的中點為.

(Ⅰ)求拋物線的準線方程;

(Ⅱ)求證:直線軸平行.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在一次公里的自行車個人賽中,25名參賽選手的成績(單位:分鐘)的莖葉圖如圖所示:

(1)現(xiàn)將參賽選手按成績由好到差編為1~25號,再用系統(tǒng)抽樣方法從中選取5人,已知選手甲的成績?yōu)?5分鐘,若甲被選取,求被選取的其余4名選手的成績的平均數(shù);

(2)若從總體中選取一個樣本,使得該樣本的平均水平與總體相同,且樣本的方差不大于7,則稱選取的樣本具有集中代表性,試從總體(25名參賽選手的成績)選取一個具有集中代表性且樣本容量為5的樣本,并求該樣本的方差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】知函數(shù)

1)當時,求的單調區(qū)間;

2)設函數(shù),若的唯一極值點,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了了解高一學生的心理健康狀況,某校心理健康咨詢中心對該校高一學生的睡眠狀況進行了抽樣調查.該中心隨機抽取了60名高一男生和40名高一女生,統(tǒng)計了他們入學第一個月的平均每天睡眠時間,得到如下頻數(shù)分布表.規(guī)定:“平均每天睡眠時間大于等于8小時”為“睡眠充足”,平均每天睡眠時間小于8小時”為“睡眠不足”.

高一男生平均每天睡眠時間頻數(shù)分布表

睡眠時間(小時)

頻數(shù)

3

20

19

10

8

高一女生平均每天睡眠時間頻數(shù)分布表

睡眠時間(小時)

頻數(shù)

2

20

11

5

2

(1)請將下面的列聯(lián)表補充完整,并根據(jù)已完成的列聯(lián)表,判斷是否有的把握認為“睡眠是否充足與性別有關”?

睡眠充足

睡眠不足

合計

男生

42

女生

7

合計

100

(2)由樣本估計總體的思想,根據(jù)這兩個頻數(shù)分布表估計該校全體高一學生入學第一個月的平均每天睡眠時間(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表);

(3)若再從這100人中平均每天睡眠時間不足6小時的同學里隨機抽取兩人進行心理健康干預,則抽取的兩人中包含女生的概率是多少?

附:參考公式:.

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中.

1)求函數(shù)的單調區(qū)間;

2)討論函數(shù)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在幾何體中,底面四邊形是邊長為4的菱形,,,平面,且,.

(1)證明:平面平面

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)在,很多人都喜歡騎“共享單車”,但也有很多市民并不認可.為了調查人們對這種交通方式的認可度,某同學從交通擁堵不嚴重的A城市和交通擁堵嚴重的B城市分別隨機調查了20名市民,得到了一個市民是否認可的樣本,具體數(shù)據(jù)如下列聯(lián)表

附:,

根據(jù)表中的數(shù)據(jù),下列說法中,正確的是(

A. 沒有95% 以上的把握認為“是否認可與城市的擁堵情況有關”

B. 有99% 以上的把握認為“是否認可與城市的擁堵情況有關”

C. 可以在犯錯誤的概率不超過0.01的前提下認為“是否認可與城市的擁堵情況有關”

D. 可以在犯錯誤的概率不超過0.025的前提下認為“是否認可與城市的擁堵情況有關”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高二(1)班全體女生的一次數(shù)學測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如下,據(jù)此解答如下問題:

1)求高二(1)班全體女生的人數(shù);

2)由頻率分布直方圖估計該班女生此次數(shù)學測試成績的眾數(shù).

查看答案和解析>>

同步練習冊答案