【題目】隨著手機的發(fā)展,“微信”逐漸成為人們支付購物的一種形式.某機構對“使用微信支付”的態(tài)度進行調(diào)查,隨機抽取了50人,他們年齡的頻數(shù)分布及對“使用微信支付”贊成人數(shù)如下表.
年齡 (單位:歲) | , | , | , | , | , | , |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 5 | 10 | 12 | 7 | 2 | 1 |
(Ⅰ)若以“年齡45歲為分界點”,由以上計數(shù)據(jù)完成下面列聯(lián)表,并判斷是否有99%的把握認為“使用微信支付”的態(tài)度與人的年齡有關;
年齡不低于45歲的人數(shù) | 年齡低于45歲的人數(shù) | 合計 | |
贊成 | |||
不贊成 | |||
合計 |
(Ⅱ)若從年齡在的被調(diào)查人中按照贊成與不贊成分層抽樣,抽取5人進行追蹤調(diào)查,在5人中抽取3人做專訪,求3人中不贊成使用微信支付的人數(shù)的分布列和期望值.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,其中.
【答案】(Ⅰ)詳見解析;(Ⅱ)詳見解析.
【解析】
(Ⅰ)根據(jù)頻數(shù)分布表補全列聯(lián)表,代入公式可求得,從而可知有的把握;(Ⅱ)根據(jù)分層抽樣的方法可知抽取的人中,支持微信支付人,不支持微信支付人,根據(jù)超幾何分布的特點求得分布列和數(shù)學期望.
(Ⅰ)由頻數(shù)分布表得列聯(lián)表如下:
年齡不低于45歲的人數(shù) | 年齡低于45歲的人數(shù) | 合計 | |
贊成 | |||
不贊成 | 13 | ||
合計 |
有的把握認為“使用微信交流”的態(tài)度與人的年齡有關
(Ⅱ)年齡在中支持微信支付人,不支持微信支付6人
由分層抽樣方法可知:抽取的人中,支持微信支付人,不支持微信支付人
設人中不支持微信支付的人數(shù)為,則所有可能的取值為:
,,
的分布列為:
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)給出三個條件:①函數(shù)的圖象關于直線對稱;②函數(shù)的圖象關于點對稱;③函數(shù)的圖象上相鄰兩個最高點的距離為.從中選出兩個條件補充在下面的問題中,并以此為依據(jù)求解問題.
已知函數(shù)(,),_____,_____.求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,平面ABCD⊥平面PAD,AD∥BC,AB=BCAD=1,∠APD=∠BAD=90°.
(1)求證:PD⊥PB;
(2)當PA=PD時,求三棱錐P﹣BCD的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在平面直角坐標系xOy中,曲線C的參數(shù)方程為(t為參數(shù)).以原點O為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為ρcos().
(1)求曲線C和直線l的直角坐標方程;
(2)若直線l交曲線C于A,B兩點,交x軸于點P,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是拋物線上位于軸兩側的不同兩點
(1)若在直線上,且使得以為頂點的四邊形恰為正方形,求該正方形的面積.
(2)求過、的切線與直線圍成的三角形面積的最小值;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某濕地公園的鳥瞰圖是一個直角梯形,其中:,,,長1千米,長千米,公園內(nèi)有一個形狀是扇形的天然湖泊,扇形以長為半徑,弧為湖岸,其余部分為灘地,B,D點是公園的進出口.公園管理方計劃在進出口之間建造一條觀光步行道:線段線段弧,其中Q在線段上(異于線段端點),與弧相切于P點(異于弧端點]根據(jù)市場行情,段的建造費用是每千米10萬元,湖岸段弧的建造費用是每千米萬元(步行道的寬度不計),設為弧度觀光步行道的建造費用為萬元.
(1)求步行道的建造費用關于的函數(shù)關系式,并求其走義域;
(2)當為何值時,步行道的建造費用最低?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com