16.設(shè)集合A={x|2x≥4},集合B={x|y=lg(x-1)},則A∩B=(  )
A.[1,2)B.(1,2]C.[2,+∞)D.[1,+∞)

分析 先分別求出集合A和集合B,由此利用交集定義能求出A∩B.

解答 解:∵集合A={x|2x≥4}={x|x≥2},
集合B={x|y=lg(x-1)}={x>1},
∴A∩B={x|x≥2}=[2,+∞).
故選:C.

點評 本題考查交集的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意交集定義的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}滿足a1=1,${a_{n+1}}=\frac{{2{a_n}}}{{{a_n}+2}}$,(n∈N*),${b_n}=\frac{1}{a_n}$.
(1)證明數(shù)列{bn}為等差數(shù)列;
(2)求數(shù)列{an}的能項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知$\overrightarrow{a}=({1,\;1}),\overrightarrow=({2,\;-1}),\;\overrightarrow{c}=({x,\;3})$,若$({\overrightarrow{a}+2\overrightarrow})∥\overrightarrow{c}$,則x=( 。
A.15B.-15C.5D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.用斜二測畫法得到一個水平放置的平面圖形的直觀圖為如圖所示的直角梯形,其中梯形的上底是下底的$\frac{1}{2}$,若原平面圖形的面積為3$\sqrt{2}$,則OA的長為(  )
A.2B.$\sqrt{2}$C.$\sqrt{3}$D.$\frac{3\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知三棱柱ABC-A1B1C1的直觀圖和三視圖如圖所示,E是棱CC1上一點.
(1)若CE=2EC1,求三棱錐E-ACB1的體積.
(2)若E是CC1的中點,求C到平面AEB1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)復(fù)數(shù)z=-7+5i(是虛數(shù)單位),z的共軛復(fù)數(shù)為$\overline{z}$,則復(fù)數(shù)(6+z)•$\overline{z}$的虛部為( 。
A.-30B.30C.32D.-32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=ex-1+ax,a∈R.
(1)討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)若?x∈[1,+∞),f(x)+lnx≥a+1恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知點F2,P分別為雙曲線$\frac{{x}^{2}}{{a\;}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點與右支上的一點,O為坐標(biāo)原點,若$\overrightarrow{OM}$=$\frac{1}{2}$($\overrightarrow{OP}$+$\overrightarrow{O{F}_{2}}$),${\overrightarrow{O{F}_{2}}}^{2}$=${\overrightarrow{{F}_{2}M}}^{2}$且2$\overrightarrow{O{F}_{2}}$•$\overrightarrow{{F}_{2}M}$=a2+b2,則該雙曲線的離心率為(  )
A.$\frac{\sqrt{3}+1}{2}$B.$\frac{3}{2}$C.$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知sin θ、cos θ是關(guān)于x的方程x2-ax+a=0的兩個根(a∈R).
(1)求sin3θ+cos3θ的值;
(2)求tan θ+$\frac{1}{tanθ}$的值.

查看答案和解析>>

同步練習(xí)冊答案