分析 根據(jù)題意設(shè)AB=xcm,利用余弦定理列出關(guān)系式,利用二次函數(shù)性質(zhì)即可得到AC取得最小值時x的值,從而得出結(jié)論.
解答 解:如圖所示,設(shè)AB=xcm,則BC=(30-x)cm,
由余弦定理得:AC2=AB2+BC2-2AB•BC•cos∠ABC=x2+(30-x)2+x(30-x)=(x-15)2+675,
∴當(dāng)x=15cm時,AC取得最小值為$\sqrt{675}$=15$\sqrt{3}$cm,
即當(dāng)AB=BC=15cm時,第三邊AC的長最短為15$\sqrt{3}$cm.
故答案為:15cm.
點評 本題考查了余弦定理,以及二次函數(shù)的性質(zhì)與應(yīng)用問題,是基礎(chǔ)題目.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | k$≥\frac{1}{2}$ | B. | k=$\frac{1}{2}$ | C. | k$≤\frac{1}{2}$ | D. | 0$≤k≤\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | -3 | C. | -1或3 | D. | 1或-3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 鈍角是第二象限角 | B. | 第二象限角比第一象限角大 | ||
C. | 大于90°的角是鈍角 | D. | -165°是第二象限角 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com