1.在平行四邊形ABCD中,AB=8,AD=5,$\overrightarrow{CP}$=3$\overrightarrow{PD}$,$\overrightarrow{AP}$•$\overrightarrow{BP}$=2,$\overrightarrow{AB}$•$\overrightarrow{AD}$=( 。
A.22B.23C.24D.25

分析 由已知條件結(jié)合向量加法、減法的三角形法則變形,代入已知條件即可求得$\overrightarrow{AB}$•$\overrightarrow{AD}$.

解答 解:如圖,
∵$\overrightarrow{AP•}\overrightarrow{BP}$=$({\overrightarrow{AD}+\frac{1}{4}\overrightarrow{AB}})({\overrightarrow{BC}-\frac{3}{4}\overrightarrow{AB}})=2$,
∴$\overrightarrow{AP•}\overrightarrow{BP}$=$({\overrightarrow{AD}+\frac{1}{4}\overrightarrow{AB}})({\overrightarrow{AD}-\frac{3}{4}\overrightarrow{AB}})$
=${\overrightarrow{AD}^2}-\frac{3}{4}\overrightarrow{AD}•\overrightarrow{AB}+\frac{1}{4}\overrightarrow{AB}•\overrightarrow{AD}-\frac{3}{16}{\overrightarrow{AB}^2}$
=25-$\frac{1}{2}\overrightarrow{AD}•\overrightarrow{AB}-\frac{3}{16}×64=2$.
∴$\overrightarrow{AB}•\overrightarrow{AD}$=22.
故選:A.

點(diǎn)評(píng) 本題考查平面向量的數(shù)量積運(yùn)算,靈活運(yùn)用題目所給條件是關(guān)鍵,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知集合A={0,1,2,3,4,5},B={-3,-2,-1,0,1,2,3},則圖中陰影部分表示的集合為( 。
A.{4,5}B.{4,5,6}C.{x|4≤x≤5}D.{x|4≤x≤6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知命題p:對(duì)?x∈R,x2≥0;命題q:若α為第一象限角,β為第二象限角,則α<β,則以下命題為假命題的是.
A.(¬p)∨(¬q)B.p∨qC.(¬p)∨qD.p∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.從集合{1,2,3,5,11}中有放回地任取2次元素分別作為直線Ax+By=0中的A、B,則恰好為坐標(biāo)系角平分線的直線的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{5}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知平面向量$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$,滿足|${\overrightarrow a}$|=$\sqrt{2}$,|${\overrightarrow b}$|=1,$\overrightarrow a$•$\overrightarrow b$=-1,且$\overrightarrow a$-$\overrightarrow c$與$\overrightarrow b$-$\overrightarrow c$的夾角為$\frac{π}{4}$,則|${\overrightarrow c}$|的最大值為( 。
A.$\sqrt{5}$B.2$\sqrt{2}$C.$\sqrt{10}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知集合M={y|$\frac{x}{4}$+$\frac{y}{2}$=1},N={x|${\frac{x^2}{16}}\right.$+$\frac{y^2}{4}$=1},則M∩N=(  )
A.B.{(4,0),(0,2)}C.{4,2}D.[-4,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.在△ABC中,a,b,c分別表示角A,B,C的對(duì)邊,若a2=b2+$\frac{1}{4}$c2,則$\frac{acosB}{c}$的值是$\frac{5}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.2014年北京市小學(xué)學(xué)區(qū)劃片及對(duì)口中學(xué)的詳細(xì)目錄出臺(tái),自強(qiáng)小學(xué)的學(xué)區(qū)劃片是A社區(qū),B社區(qū)和C社區(qū);對(duì)口直升中學(xué)或大派位中學(xué)是甲中學(xué)、乙中學(xué)、丙中學(xué)、丁中學(xué).如A社區(qū)的學(xué)齡兒童可在自強(qiáng)小學(xué)上學(xué),小學(xué)畢業(yè)后,可以到甲、乙、丙、丁四所中學(xué)中的一所學(xué)校就讀.
(I)求2014年自強(qiáng)小學(xué)的一年級(jí)新生小明、小華來(lái)自于不用社區(qū)的概率(假設(shè)小明、小華來(lái)自于每個(gè)社區(qū)都是等可能的)
(II)自強(qiáng)小學(xué)2014年的一年級(jí)新生小明、小華、小軍三個(gè)好朋友小學(xué)畢業(yè)后都想去甲中學(xué)就讀,假設(shè)自強(qiáng)小學(xué)的每個(gè)學(xué)生直升或大派位到甲、乙、丙、丁四所中學(xué)就讀的可能性都相等,設(shè)三人中到甲中學(xué)就讀的人數(shù)為x,求x的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知拋物線C:y2=8x的焦點(diǎn)為F,P是C上一點(diǎn),Q(-2,y0)是x軸上方一點(diǎn),若△PQF是等邊三角形,則y0的值為(  )
A.$4\sqrt{3}$B.$3\sqrt{2}$C.$\frac{{\sqrt{2}}}{3}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案