A. | k≥1 | B. | k>1 | C. | 0<k<1 | D. | 0<k≤1 |
分析 欲使f(x)=kx2有四個(gè)根,即$\frac{|x|}{x+2}$=kx2(*)有四個(gè)根,可知x=0是方程(*)的1個(gè)根,則只要$\frac{|x|}{x+2}$=kx2有3個(gè)根不等于0的根即可.即$\frac{1}{k}=\left\{\begin{array}{l}{x(x+2),x>0}\\{-x(x+2),x<0}\end{array}\right.$,
結(jié)合函數(shù)g(x)=$\left\{\begin{array}{l}{x(x+2),x>0}\\{-x(x+2),x<0}\end{array}\right.$的圖象可求.
解答 解:f(x)=kx2有四個(gè)根,即$\frac{|x|}{x+2}$=kx2(*)
有四個(gè)根,
可知x=0是方程(*)的1個(gè)根,
則只要$\frac{|x|}{x+2}$=kx2有3個(gè)根不等于0的根即可.
即$\frac{1}{k}=\left\{\begin{array}{l}{x(x+2),x>0}\\{-x(x+2),x<0}\end{array}\right.$,
結(jié)合函數(shù)g(x)=$\left\{\begin{array}{l}{x(x+2),x>0}\\{-x(x+2),x<0}\end{array}\right.$的圖象
可得0<$\frac{1}{k}$<1,
∴k>1,
故選:B.
點(diǎn)評(píng) 本題主要考查了方程的根與函數(shù)交點(diǎn)的相互轉(zhuǎn)化,體現(xiàn)了分類討論、轉(zhuǎn)化思想與數(shù)形結(jié)合思想在解題中的應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5π}{12}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | c>a>b | B. | a>b>c | C. | a>c>b | D. | b>c>a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|x≤-1} | B. | {x|x≤1} | C. | {x|-1<x≤1} | D. | {x|1≤x<3} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com