分析 (1)延長BE交圓E于點M,連接CM,利用切割線定理轉(zhuǎn)化求解AF即可.
(2)過E作EH⊥BC于H,通過△EDH~△ADF,轉(zhuǎn)化求解即可.
解答 解:(1)延長BE交圓E于點M,連接CM,則∠BCM=90°,
又BM=2BE=4,∠EBC=30°,所以$BC=2\sqrt{3}$,
又$AB=\frac{1}{3}AC$,可知$AB=\frac{1}{2}BC=\sqrt{3}$.
所以,$A{F^2}=AB•AC=\sqrt{3}•3\sqrt{3}=9$,即AF=3…(6分)
(2)證明:過E作EH⊥BC于H,則△EDH~△ADF,EH=2sin30°=1,
從而有$\frac{ED}{AD}=\frac{EH}{AF}=\frac{1}{3}$,因此AD=3ED…(10分)
點評 本題考查直線與圓的位置關(guān)系,切割線定理以及相似三角形的應(yīng)用,考查計算能力.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 極大值點x=-2,極小值點x=0 | B. | 極小值點x=-2,極大值點x=0 | ||
C. | 極值點只有x=-2 | D. | 極值點只有x=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com