7.已知$\overrightarrow a$,$\overrightarrow b$為單位向量,其夾角為120°,則$(\overrightarrow a-2\overrightarrow b)•\overrightarrow b$=( 。
A.$-\frac{5}{2}$B.$-\frac{3}{2}$C.-1D.2

分析 求出$\overrightarrow{a}•\overrightarrow$,將$(\overrightarrow a-2\overrightarrow b)•\overrightarrow b$展開即可得出結(jié)果.

解答 解:∵$\overrightarrow a$,$\overrightarrow b$為單位向量,其夾角為120°,
∴${\overrightarrow{a}}^{2}={\overrightarrow}^{2}=1$,$\overrightarrow{a}•\overrightarrow$=1×1×cos120°=-$\frac{1}{2}$.
∴$(\overrightarrow a-2\overrightarrow b)•\overrightarrow b$=$\overrightarrow{a}•\overrightarrow$-2${\overrightarrow}^{2}$=-$\frac{1}{2}$-2=-$\frac{5}{2}$.
故選:A.

點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在${({x+\frac{2}{{\sqrt{x}}}})^4}$的展開式中,x的系數(shù)為24.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖所示,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面邊長(zhǎng)為a,E是PC的中點(diǎn).
(1)求證:PA∥面BDE;
(2)求證:平面PAC⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知等比數(shù)列{an}的各項(xiàng)都為正數(shù),且a3,$\frac{1}{2}{a_5},{a_4}$成等差數(shù)列,則$\frac{{{a_3}+{a_5}}}{{{a_4}+{a_6}}}$的值是(  )
A.$\frac{{\sqrt{5}-1}}{2}$B.$\frac{{\sqrt{5}+1}}{2}$C.$\frac{{3-\sqrt{5}}}{2}$D.$\frac{{3+\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在△ABC中,點(diǎn)P在BC邊上,∠PAC=60°,PC=2,AP+AC=4.
(Ⅰ) 求∠ACP;
(Ⅱ) 若△APB的面積是$\frac{{3\sqrt{3}}}{2}$,求sin∠BAP.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.復(fù)數(shù)$\frac{2}{1+i}$的虛部是( 。
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.《九章算術(shù)》中,將底面為長(zhǎng)方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽(yáng)馬;將四個(gè)面都為直角三角形的三棱錐稱之為鱉臑.若三棱錐P-ABC為鱉臑,PA⊥平面ABC,PA=AB=2,AC=4,三棱錐P-ABC的四個(gè)頂點(diǎn)都在球O的球面上,則球O的表面積為( 。
A.B.12πC.20πD.24π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.某人吃完飯后散步,在0到3小時(shí)內(nèi)速度與時(shí)間的關(guān)系為v=t3-3t2+2t(km/h),這3小時(shí)內(nèi)他走過的路程為( 。
A.$\frac{9}{4}km$B.$\frac{10}{4}km$C.$\frac{11}{4}km$D.$\frac{13}{4}km$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.正在進(jìn)行中的CBA比賽吸引了眾多觀眾,遼籃的表現(xiàn)更是牽動(dòng)了廣大球迷的心,某機(jī)構(gòu)為了解該地群眾對(duì)賽事的關(guān)注程度,隨機(jī)調(diào)查了120名群眾,得到如下列聯(lián)表(單位:名)
合計(jì)
關(guān)注602080
不關(guān)注202040
合計(jì)8040120
附表:
p(k2≥k00.150.100.0250.0100.0050.001 
k02.0722.7065.0246.6357.87910.828 
${K^2}=\frac{{n{{(ad-cb)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
(1)從這80名男群眾中按是否對(duì)賽事關(guān)注分層抽樣,抽取一個(gè)容量為8的樣本,問樣本中對(duì)賽事關(guān)注和不關(guān)注的群眾各多少名?
(2)根據(jù)以上列聯(lián)表,問能否在犯錯(cuò)率不超過0.010的前提下認(rèn)為群眾性別與關(guān)注賽事有關(guān)?
(3)從(1)中的8名男性群眾中隨機(jī)選取2名進(jìn)行跟蹤調(diào)查,求選到的兩名群眾中恰有一名觀注賽事的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案