分析 (I)利用相互垂直的直線斜率之間的關(guān)系、點(diǎn)斜式即可得出.
(II)點(diǎn)C在x軸上,又x-$\sqrt{2}$y-3=0.可得C(3,0).利用中點(diǎn)坐標(biāo)公式可得斜邊AC的中點(diǎn).可得直角△ABC的斜邊中線OB的方程及其|OB|.
解答 解:(Ⅰ)依題意,直角△ABC的直角頂點(diǎn)為B(-1,-2$\sqrt{2}$),
∴AB⊥BC,故kAB•kBC=-1,∴kBC=$\frac{-1}{\frac{-2\sqrt{2}-0}{-1-(-3)}}$=$\frac{\sqrt{2}}{2}$.
∴BC邊所在的直線的方程為y+2$\sqrt{2}$=$\frac{\sqrt{2}}{2}$(x+1),
即x-$\sqrt{2}$y-3=0.
(Ⅱ)∵點(diǎn)C在x軸上,又x-$\sqrt{2}$y-3=0.
由y=0,得x=3,即C(3,0).
∴斜邊AC的中點(diǎn)為(0,0),
故直角△ABC的斜邊中線為OB(O為坐標(biāo)原點(diǎn)),
設(shè)直線OB:y=kx,把B代入,得k=2$\sqrt{2}$.
∴直角△ABC的斜邊中線OB的方程為y=2$\sqrt{2}$x.
斜邊中線的長(zhǎng)度|OB|=$\sqrt{(-1)^{2}+(-2\sqrt{2})^{2}}$=3.
點(diǎn)評(píng) 本題考查了相互垂直的直線斜率之間的關(guān)系、直線方程、中點(diǎn)坐標(biāo)公式、兩點(diǎn)之間的距離公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
晚上 | 白天 | 總計(jì) | |
男嬰 | 45 | B | |
女?huà)?/TD> | A | 47 | C |
總計(jì) | 98 | D | 180 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第13行第2個(gè)數(shù) | B. | 第14行第3個(gè)數(shù) | C. | 第13行第3個(gè)數(shù) | D. | 第17行第2個(gè)數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com