17.已知集合A={1,3},$B=\{x|0<lg(x+1)<\frac{1}{2},x∈Z\}$,則A∩B=(  )
A.{1}B.{1,3}C.{1,2,3}D.{1,3,4}

分析 求出B中不等式的解集確定出B,找出A與B的交集即可.

解答 解:由B中不等式變形得:lg1<lg(x+1)<lg$\sqrt{10}$,
解得:0<x<$\sqrt{10}$-1,即B={x|0<x<$\sqrt{10}$-1,x∈Z}={1,2},
∵A={1,3},
∴A∩B={1},
故選:A.

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

7.設命題P:存在n∈N,使n2>2n,則¬P為任意n∈N,n2≤2n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.在等比數(shù)列{an}中,S3=1,S6=4,則a10+a11+a12的值是( 。
A.81B.64C.32D.27

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知數(shù)列{an},滿足a1=-$\frac{1}{2}$,$\frac{{a}_{n}-{a}_{n+1}}{{a}_{n+1}{a}_{n}}$=$\frac{2}{{n}^{2}+n}$,則數(shù)列{an}的前n項和的最大值為( 。
A.2B.$\frac{1}{2}$C.0D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知全集U=R,集合$A=\{x|x(x-5)≥0\},B=\{x|y=\sqrt{3-x}\}$,則(∁UA)∩B等于(  )
A.(0,3)B.(0,5)C.D.(0,3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知直線l是函數(shù)f(x)=2lnx+x2圖象的切線,當l的斜率最小時,直線l的方程是(  )
A.4x-y+3=0B.4x-y-3=0C.4x+y+3=0D.4x+y-3=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知動點A,B在橢圓$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1上,且線段AB的垂直平分線始終過點P(-1,0).
(1)證明線段AB的中點M在定直線上;
(2)求線段AB長度的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.下列結(jié)論正確的是①④.
①(x2-4)(x+$\frac{1}{x}$)9的展開式中x3的系數(shù)為-210;
②在吸煙與患肺病這兩個分類變量的計算中,從獨立性檢驗知,有99%的把握認為吸煙與患肺病有關系時,我們說某人吸煙,那么他有99%的可能患肺;
③已知命題“若函數(shù)f(x)=ex-mx在(0,+∞)上是增函數(shù),則m≤1”的逆否命題是“若m>1,則函數(shù)f(x)=ex-mx在(0,+∞)上是減函數(shù)”,是真命題;
④不等式ax2-(2a-3)x-1>0對?x>1恒成立的充要條件是0≤a≤2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知f(x)=$\frac{ln|x|}{x}$,g(x)=$\frac{-{x}^{2}+x-a}{x}$(α>0),若存在x>0,使得f[g(x)]>e,則實數(shù)a的取值范圍是$(0,\frac{(e+1)^{2}}{4{e}^{2}})$.

查看答案和解析>>

同步練習冊答案