10.命題p:?x∈R,x≥0的否定是( 。
A.¬p:?x∈R,x<0B.¬p:?x∈R,x≤0C.¬p:?x∈R,x<0D.¬p:?x∈R,x≤0

分析 利用全稱命題的否定是特稱命題,去判斷.

解答 解:因?yàn)槊}是全稱命題,根據(jù)全稱命題的否定是特稱命題,
所以命題的否定¬p:?x∈R,x<0,
故選:C

點(diǎn)評(píng) 本題主要考查全稱命題的否定,要求掌握全稱命題的否定是特稱命題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.對(duì)于二次函數(shù)y=-4x2+8x-3,
(1)若x∈R
①指出圖象的開口方向、對(duì)稱軸方程、頂點(diǎn)坐標(biāo);
②求函數(shù)的最大值或最小值;
③分析函數(shù)的單調(diào)性.
(2)若x∈[-1,5),試確定y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=|2x+1|-|x-4|.
(1)求不等式f(x)≥3的解集M;
(2)若a∈M,求證:|x+a|+|x-$\frac{1}{a}$|≥$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某校為提高學(xué)生身體素質(zhì),決定對(duì)畢業(yè)班的學(xué)生進(jìn)行身體素質(zhì)測(cè)試,每個(gè)同學(xué)共有4次測(cè)試機(jī)會(huì),若某次測(cè)試合格就不用進(jìn)行后面的測(cè)試,已知某同學(xué)每次參加測(cè)試合格的概率組成一個(gè)以$\frac{1}{8}$為公差的等差數(shù)列,若他參加第一次測(cè)試就通過的概率不足$\frac{1}{2}$,恰好參加兩次測(cè)試通過的概率為$\frac{9}{32}$.
(Ⅰ)求該同學(xué)第一次參加測(cè)試就能通過的概率;
(Ⅱ)求該同學(xué)參加測(cè)試的次數(shù)的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知雙曲線$\frac{{x}^{2}}{{m}^{2}+16}$-$\frac{{y}^{2}}{4m-3}$=1的實(shí)軸長(zhǎng)為10,則該雙曲線的漸近線的斜率為(  )
A.$±\frac{5}{4}$B.$±\frac{4}{5}$C.$±\frac{5}{3}$D.$±\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.平面內(nèi)到定點(diǎn)F(0,1)和定直線l:y=-1的距離之和等于4的動(dòng)點(diǎn)的軌跡為曲線C.關(guān)于曲線C的幾何性質(zhì),給出下列三個(gè)結(jié)論:
①曲線C關(guān)于y軸對(duì)稱;
②若點(diǎn)P(x,y)在曲線C上,則|y|≤2;
③若點(diǎn)P在曲線C上,則1≤|PF|≤4.
其中,所有正確結(jié)論的序號(hào)是①②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在△ABC中,角A、B、C所對(duì)的邊分別是a,b,c,cosC=$\frac{1}{9}$,且acosB+bcosA=2,則△ABC面積的最大值為$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知x=$\frac{1}{8}$,求值:$\frac{x+1}{{x}^{\frac{2}{3}}+1}$$+\frac{x-1}{{x}^{\frac{2}{3}}+{x}^{\frac{1}{3}}+1}$-$\frac{x-{x}^{\frac{2}{3}}}{{x}^{\frac{1}{3}}-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)復(fù)數(shù)z滿足z(1+i)=|$\sqrt{3}$-i|(i是虛數(shù)單位),則復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊(cè)答案