3.下列說法正確的有②③④.(填正確命題的序號)
①用R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\stackrel{∧}{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$刻畫回歸效果,當R2越大時,模型的擬合效果越差;反之,則越好;
②可導函數(shù)f(x)在x=x0處取得極值,則f′(x0)=0;
③歸納推理是由特殊到一般的推理,而演繹推理是由一般到特殊的推理;
④綜合法證明數(shù)學問題是“由因索果”,分析法證明數(shù)學問題是“執(zhí)果索因”.

分析 ①可由相關(guān)指數(shù)的概念判斷;②③④由導數(shù),推理,綜合法和反證法的概念判斷即可.

解答 解:①.相關(guān)指數(shù)R2越大,則相關(guān)性越強,模型的擬合效果越好. 錯誤;
②.可導函數(shù)f(x)在x=x0處取得極值,則f′(x0)=0;顯然正確;
③歸納推理是由特殊到一般的推理,而演繹推理是由一般到特殊的推理,由歸納推理與演繹推理的概念可知正確.
④綜合法證明數(shù)學問題是“由因索果”,分析法證明數(shù)學問題是“執(zhí)果索因”,由概念可知正確.
故答案為:②③④.

點評 本題考查了相關(guān)指數(shù),導數(shù),歸納推理,演繹推理,綜合法和分析法的概念.屬于基礎(chǔ)題型,應熟練掌握.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

13.小麗今天晚自習準備復習歷史、地理或政治中的一科,她用數(shù)學游戲的結(jié)果來決定選哪一科,游戲規(guī)則是:在平面直角坐標系中,以原點O為起點,再分別以P1(-1,0),P2(-1,1),P3(0,1),P4(1,1),P5(1,0)這5個點為終點,得到5個向量,任取其中兩個向量,計算這兩個向量的數(shù)量積y,若y>0,就復習歷史,若y=0,就復習地理,若y<0,就復習政治.
(1)寫出y的所有可能取值;
(2)求小麗復習歷史的概率和復習地理的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{1}{2}$,左、右焦點分別為圓F1、F2,M是C上一點,|MF1|=2,且$|{\overrightarrow{M{F_1}}}||{\overrightarrow{M{F_2}}}|=-2\overrightarrow{M{F_1}}•\overrightarrow{{F_2}M}$.
(1)求橢圓C的方程;
(2)當過點P(4,1)的動直線l與橢圓C相交于不同兩點A,B時,線段AB上取點Q,且Q滿足$|{\overrightarrow{AP}}||{\overrightarrow{QB}}|=|{\overrightarrow{AQ}}||{\overrightarrow{PB}}|$,證明點Q總在某定直線上,并求出該定直線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖,在△ABC中,∠CAB=45°,∠CBA=30°,CD⊥AB,DE⊥AC,DF⊥BC.

(1)證明:A,E,F(xiàn),B四點共圓;
(2)求$\frac{EF}{AB}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知數(shù)列{an}滿足a1=a,${a_{n+1}}=(2|{sin\frac{nπ}{2}}|-1){a_n}+2n$.
(Ⅰ)請寫出a2,a3,a4,a5的值;
(Ⅱ)猜想數(shù)列{an}的通項公式,不必證明;
(Ⅲ)請利用(Ⅱ)中猜想的結(jié)論,求數(shù)列{an}的前120項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-4t+\frac{11}{3}}\\{y=3t-1}\end{array}\right.$(t為參數(shù)),在直角坐標系xOy中,以O(shè)為極點,x軸正半軸為極軸建立極坐標系,圓N的方程為ρ2-6ρsinθ=-8
(1)求圓N的圓心N的極坐標;
(2)判斷直線l與圓N的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.設(shè)a、b∈(0,+∞),則“ab<ba”是“a>b>e”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.函數(shù)$f(x)=x{e^x}-\frac{1}{2}{x^2}-x$的零點個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.證明不等式:$\sqrt{6}+\sqrt{7}>2\sqrt{2}+\sqrt{5}$.

查看答案和解析>>

同步練習冊答案