8.在復(fù)平面內(nèi),復(fù)數(shù)z的對(duì)應(yīng)點(diǎn)為(1,-2),復(fù)數(shù)z的共軛復(fù)數(shù)$\overline{z}$,則($\overline{z}$)2=( 。
A.-3-4iB.-3+4iC.5-4iD.5+4i

分析 利用復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義、幾何意義即可得出.

解答 解:復(fù)數(shù)z的對(duì)應(yīng)點(diǎn)為(1,-2),復(fù)數(shù)z=1-2i的共軛復(fù)數(shù)$\overline{z}$=1+2i,則($\overline{z}$)2=(1+2i)2=-3+4i.
故選:B.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義、幾何意義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知△ABC的三個(gè)內(nèi)角A,B,C的對(duì)應(yīng)邊分別為a,b,c,且${S_{△ABC}}=\frac{{\sqrt{3}}}{12}{a^2}$.則使得sin2B+sin2C=msinBsinC成立的實(shí)數(shù)m的取值范圍是[2,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知P(x,y)為不等式組$\left\{{\begin{array}{l}{x+y≤4}\\{x-y≤0}\\{x-m≥0}\end{array}}\right.$表示的平面區(qū)域M內(nèi)任意一點(diǎn),若目標(biāo)函數(shù)z=5x+3y的最大值等于平面區(qū)域M的面積,則m=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)點(diǎn)M(x,y)滿足不等式組$\left\{\begin{array}{l}3x-y-6≤0\\ x-y+2≥0\\ x≥0,y≥0\end{array}\right.$,點(diǎn)P(-4a,a)(a>0),則當(dāng)$\overrightarrow{OP}•\overrightarrow{OM}$最大時(shí),點(diǎn)M為( 。
A.(0,2)B.(0,0)C.(4,6)D.(2,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.等腰直角三角形ABC中,∠C=90°,AC=BC=2,點(diǎn)P是△ABC斜邊上任意一點(diǎn),則線段CP的長(zhǎng)度不大于$\sqrt{3}$的概率是( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{2}}}{4}$C.$\frac{1}{2}$D.$\frac{{\sqrt{6}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知a,b∈R,i是虛數(shù)單位,若a+i=1-bi,則(a+bi)8=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知命題p:?x∈(1,+∞),x3+16>8x,則命題p的否定為( 。
A.?x∈(1,+∞),x3+16≤8xB.?x∈(1,+∞),x3+16<8x
C.?x∈(1,+∞),x3+16≤8xD.?x∈(1,+∞),x3+16<8x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,輸出的S=127.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知x=lnπ,y=$lo{g}_{\frac{1}{3}}\frac{\sqrt{2}}{2}$,z=${π}^{-\frac{1}{2}}$,則( 。
A.x<y<zB.z<x<yC.z<y<xD.y<z<x

查看答案和解析>>

同步練習(xí)冊(cè)答案