18.已知△ABC的三個(gè)內(nèi)角A,B,C的對(duì)應(yīng)邊分別為a,b,c,且${S_{△ABC}}=\frac{{\sqrt{3}}}{12}{a^2}$.則使得sin2B+sin2C=msinBsinC成立的實(shí)數(shù)m的取值范圍是[2,4].

分析 先由三角形的面積公式和余弦定理以及兩角和的正弦公式可得b2+c2=4bcsin(A+$\frac{π}{6}$),再根據(jù)正弦定理可得b2+c2=mbc,即可得到m=4sin(A+$\frac{π}{6}$),由正弦函數(shù)的性質(zhì)和基本不等式即可求出范圍

解答 解:由三角形的面積公式可得S△ABC=$\frac{1}{2}$bcsinA=$\frac{\sqrt{3}}{12}$a2,即a2=2$\sqrt{3}$bcsinA
由余弦定理可得a2=b2+c2-2bccosA,
∴2$\sqrt{3}$bcsinA=b2+c2-2bccosA,
∴b2+c2=2bc($\sqrt{3}$sinA+cosA)=4bcsin(A+$\frac{π}{6}$)
∵sin2B+sin2C=msinBsinC,
由正弦定理可得b2+c2=mbc,
∴4bcsin(A+$\frac{π}{6}$)=mbc,
∴m=4sin(A+$\frac{π}{6}$),
∵0<A<π,
∴$\frac{π}{6}$<A+$\frac{π}{6}$<$\frac{7π}{6}$
∴-$\frac{1}{2}$<sin(A+$\frac{π}{6}$)≤1
∴-2<m≤4,
∵b2+c2≥2bc,當(dāng)且僅當(dāng)b=c時(shí)取等號(hào),
∴mbc≥2bc,
∴m≥2,
綜上所述m的取值范圍為[2,4],
故答案為:[2,4]

點(diǎn)評(píng) 本題考查了正弦定理和余弦定理和三角形的面積公式以及基本不等式和正弦函數(shù)的圖象和性質(zhì),考查了學(xué)生的轉(zhuǎn)化能力和運(yùn)算能力,屬于中檔題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.《最強(qiáng)大腦》是大型科學(xué)競技類真人秀節(jié)目,是專注傳播腦科學(xué)知識(shí)和腦力競技的節(jié)目.某機(jī)構(gòu)為了了解大學(xué)生喜歡《最強(qiáng)大腦》是否與性別有關(guān),對(duì)某校的100名大學(xué)生進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:
喜歡《最強(qiáng)大腦》不喜歡《最強(qiáng)大腦》合計(jì)
男生15
女生15
合計(jì)
已知在這100人中隨機(jī)抽取1人抽到不喜歡《最強(qiáng)大腦》的大學(xué)生的概率為0.4
( I)請(qǐng)將上述列聯(lián)表補(bǔ)充完整;判斷是否有99.9%的把握認(rèn)為喜歡《最強(qiáng)大腦》與性別有關(guān),并說明理由;
( II)已知在被調(diào)查的大學(xué)生中有5名是大一學(xué)生,其中3名喜歡《最強(qiáng)大腦》,現(xiàn)從這5名大一學(xué)生中隨機(jī)抽取2人,抽到喜歡《最強(qiáng)大腦》的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.
下面的臨界值表僅參考:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在某大學(xué)自主招生的面試中,考生要從規(guī)定的6道科學(xué)題,4道人文題共10道題中,隨機(jī)抽取3道作答,每道題答對(duì)得10分,答錯(cuò)或不答扣5分,已知甲、乙兩名考生參加面試,甲只能答對(duì)其中的6道科學(xué)題,乙答對(duì)每道題的概率都是$\frac{2}{3}$,每個(gè)人答題正確與否互不影響.
(1)求考生甲得分X的分布列和數(shù)學(xué)期望EX;
(2)求甲,乙兩人中至少有一人得分不少于15分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知線段PQ=1,A1是線段PQ的中點(diǎn),A2是QA1的中點(diǎn),A3是A1A2的中點(diǎn),A4是A3A2的中點(diǎn),…,An是An-2An-1的中點(diǎn),則PA5的長為$\frac{21}{32}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知平面向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$滿足$|{\overrightarrow a}|=4$,$|{\overrightarrow b}|=3$,$|{\overrightarrow c}|=2$,$\overrightarrow b•\overrightarrow c=3$,則${(\overrightarrow a-\overrightarrow b)^2}{(\overrightarrow a-\overrightarrow c)^2}-{[(\overrightarrow a-\overrightarrow b)•(\overrightarrow a-\overrightarrow c)]^2}$最大值為( 。
A.$4\sqrt{3}+3\sqrt{7}$B.$4\sqrt{7}+3\sqrt{3}$C.${(4\sqrt{3}+3\sqrt{7})^2}$D.${(4\sqrt{7}+3\sqrt{3})^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,邊長為4的正方形ABCD中,AC與BD交于點(diǎn)O,$\overrightarrow{BE}$=$\frac{3}{4}$$\overrightarrow{BD}$,$\overrightarrow{CF}$=$\frac{1}{4}$$\overrightarrow{CB}$,則$\overrightarrow{AE}$•$\overrightarrow{OF}$等于( 。
A.-3B.3C.-5D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖所示,四棱錐A-BCDE,已知平面BCDE⊥平面ABC,BE⊥EC,DE∥BC,BC=2DE=6,AB=4$\sqrt{3}$,∠ABC=30°.
(1)求證:AC⊥BE;
(2)若∠BCE=45°,求三棱錐A-CDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知幾何體ABCDEF中,AB∥CD,AD⊥DC,EA⊥平面ABCD,F(xiàn)C∥EA,AB=AD=EA=1,CD=CF=2.
(Ⅰ)求證:平面EBD⊥平面BCF;
(Ⅱ)求點(diǎn)B到平面ECD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在復(fù)平面內(nèi),復(fù)數(shù)z的對(duì)應(yīng)點(diǎn)為(1,-2),復(fù)數(shù)z的共軛復(fù)數(shù)$\overline{z}$,則($\overline{z}$)2=( 。
A.-3-4iB.-3+4iC.5-4iD.5+4i

查看答案和解析>>

同步練習(xí)冊答案