【題目】用0、1、2、3、4這五個(gè)數(shù)字,可以組成多少個(gè)滿足下列條件的沒有重復(fù)數(shù)字的五位數(shù)?
(1)奇數(shù);
(2)比21034大的偶數(shù).

【答案】
(1)解:先排個(gè)位,再排首位,其它任意排,可組成奇數(shù)個(gè)數(shù)為 個(gè)奇數(shù)
(2)解:①當(dāng)末位數(shù)字是0時(shí),首位數(shù)字可以為2或3或4,滿足條件的數(shù)共有3×A33=18個(gè).

②當(dāng)末位數(shù)字是2時(shí),首位數(shù)字可以為3或4,滿足條件的數(shù)共有2×A33=12個(gè).

③當(dāng)末位數(shù)字是4時(shí),首位數(shù)字是3的有A33=6個(gè),首位數(shù)字是2時(shí),有3個(gè),共有9個(gè).

綜上知,比21034大的偶數(shù)共有18+12+9=39個(gè)


【解析】(1)首位不能為0,個(gè)位是奇數(shù),問題得以解決.(2)需要分類討論,當(dāng)末位數(shù)字是0時(shí),當(dāng)末位數(shù)字是2時(shí),當(dāng)末位數(shù)字是4時(shí),根據(jù)分類計(jì)數(shù)原理可得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知單調(diào)遞減的等比數(shù)列{an}滿足:a2+a3+a4=28,且a3+2是a2 , a4是等差中項(xiàng),則公比q= , 通項(xiàng)公式為an=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某教師調(diào)查了名高三學(xué)生購買的數(shù)學(xué)課外輔導(dǎo)書的數(shù)量,將統(tǒng)計(jì)數(shù)據(jù)制成如下表格:

男生

女生

總計(jì)

購買數(shù)學(xué)課外輔導(dǎo)書超過

購買數(shù)學(xué)課外輔導(dǎo)書不超過

總計(jì)

(Ⅰ)根據(jù)表格中的數(shù)據(jù),是否有的把握認(rèn)為購買數(shù)學(xué)課外輔導(dǎo)書的數(shù)量與性別相關(guān);

(Ⅱ)從購買數(shù)學(xué)課外輔導(dǎo)書不超過本的學(xué)生中,按照性別分層抽樣抽取人,再從這人中隨機(jī)抽取人詢問購買原因,求恰有名男生被抽到的概率.

附: , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知 a=2csinA.
(1)求角C的值;
(2)若c= ,且SABC= ,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,Sn=2n2﹣30n.
(1)求a1及an;
(2)判斷這個(gè)數(shù)列是否是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題共12分)已知函數(shù).

(1)求函數(shù)的極值點(diǎn);

(2)若f(x)≥x2+1在(0,2)上恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是函數(shù) 的導(dǎo)函數(shù) 的圖象,對(duì)此圖象,有如下結(jié)論:

①在區(qū)間(-2,1)內(nèi) 是增函數(shù);
②在區(qū)間(1,3)內(nèi) 是減函數(shù);
③在 時(shí), 取得極大值;
④在 時(shí), 取得極小值。
其中正確的是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一個(gè)圓柱形乒乓球筒,高為厘米,底面半徑為厘米.球筒的上底和下底分別粘有一個(gè)乒乓球,乒乓球與球筒底面及側(cè)面均相切(球筒和乒乓球厚度忽略不計(jì)).一個(gè)平面與兩乒乓球均相切,且此平面截球筒邊緣所得的圖形為一個(gè)橢圓,則該橢圓的離心率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知{an}是等差數(shù)列,滿足a1=3,a4=12,數(shù)列{bn}滿足b1=4,b4=20,且{bn﹣an}為等比數(shù)列.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案