3.已知函數(shù)f(x)=x2-1,g(x)=x+1.
(1)求函數(shù)F(x)=f(x)+|g(x)|在區(qū)間[-2,0]上的值域.
(2)若當(dāng)x∈R時,不等式f(x)≥λg(x)恒成立,求實(shí)數(shù)λ的取值范圍.

分析 (1)畫出函數(shù)F(x)的圖象,結(jié)合圖象求出函數(shù)的值域即可;
(2)當(dāng)x∈R時,不等式f(x)≥λg(x)恒成立,可得△=λ2+4λ+4≤0,即可求實(shí)數(shù)λ的取值范圍.

解答 解:(1)F(x)=x2-1+|x+1|=$\left\{\begin{array}{l}{{x}^{2}-x-2,x∈[-2,-1)}\\{{x}^{2}+1,x∈[-1,0]}\end{array}\right.$,
畫出函數(shù)F(x)的圖象,如圖所示:

結(jié)合圖象,x=-2時,F(xiàn)(x)取最大值4,
x=-$\frac{1}{2}$時,F(xiàn)(x)取最小值-$\frac{1}{4}$,
故函數(shù)的值域是[-$\frac{1}{4}$,4];
(2)∵x2-1≥λ(x+1),x∈R恒成立,
∴x2-λx-λ-1≥0,x∈R恒成立,
∴△=λ2+4λ+4≤0,∴λ=-2.

點(diǎn)評 本題考查恒成立問題,考查函數(shù)在區(qū)間x∈[-2,0]上的最大值,考查配方法,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知(1-i)•z=2,則復(fù)數(shù)z的虛部為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在平面直角坐標(biāo)系xOy中,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P(3,1)在橢圓上,△PF1F2的面積為2$\sqrt{2}$,點(diǎn)Q是PF2的延長線與橢圓的交點(diǎn).
(1)①求橢圓C的標(biāo)準(zhǔn)方程;
②若∠PQF1=$\frac{π}{3}$,求QF1•QF2的值;
(2)直線y=x+k與橢圓C相交于A,B兩點(diǎn).若以AB為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知全集U=R,M={x|x<0或x>2},N={x|x+3<0},則M∩N={x|x<-3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.2017年1月我市某校高三年級1600名學(xué)生參加了2017屆全市高三期末聯(lián)考,已知數(shù)學(xué)考試成績X~N(100,σ2)(試卷滿分150分).統(tǒng)計(jì)結(jié)果顯示數(shù)學(xué)考試成績在80分到120分之間的人數(shù)約為總?cè)藬?shù)的$\frac{3}{4}$,則此次期末聯(lián)考中成績不低于120分的學(xué)生人數(shù)約為( 。
A.120B.160C.200D.240

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列不等式中,正確的個數(shù)為( 。
①若x>0且x≠1,則$lnx+\frac{1}{lnx}≥2$;
②a2+b2+2≥2a+2b;
③${x^2}+\frac{1}{{{x^2}+1}}≥1$;
④若a>0,b>0,則$\frac{a^2}+\frac{b^2}{a}≥a+b$;
⑤任意的x>0,都有ex>x+1.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合A={x|x2-2x-3<0},B={y|y=-3x2+1,x∈R},則A∩B=(  )
A.{x|-3<x≤1}B.{x|1≤x<2}C.{x|-1<x≤1}D.{x|1<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)$f(x)={log_{\frac{1}{2}}}\frac{1-ax}{x-1}+x$為奇函數(shù),a為常數(shù).
(1)求a的值;
(2)判斷函數(shù)f(x)在x∈(1,+∞)上的單調(diào)性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,已知矩形ABCD中,$AB=\frac{4}{3}BC=8$,現(xiàn)沿AC折起,使得平面ABC⊥平面ADC,連接BD,得到三棱錐B-ACD,則其外接球的體積為( 。
A.$\frac{500π}{9}$B.$\frac{250π}{3}$C.$\frac{1000π}{3}$D.$\frac{500π}{3}$

查看答案和解析>>

同步練習(xí)冊答案