13.已知(1-i)•z=2,則復(fù)數(shù)z的虛部為1.

分析 把已知等式變形,利用復(fù)數(shù)代數(shù)形式的乘除運算化簡得答案.

解答 解:由(1-i)•z=2,得
$z=\frac{2}{1-i}=\frac{2(1+i)}{(1-i)(1+i)}=1+i$,
∴復(fù)數(shù)z的虛部為1.
故答案為:1.

點評 本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓兩焦點的坐標(biāo)為F1(-1,0),F(xiàn)2(1,0),點P為橢圓上一點,|PF1|,|F1F2|,|F2P|成等差數(shù)列,求橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.(I)已知向量$\overrightarrow{OA}=(1,-2)$,$\overrightarrow{OB}=(4,-1)$,$\overrightarrow{OC}=({m,m+1})$.若$\overrightarrow{AB}∥\overrightarrow{OC}$,求實數(shù)m的值;
( II)已知矩形ABCD的邊長為1,點E是邊AB的中點,求$\overrightarrow{DE}•\overrightarrow{CB}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在平面直角坐標(biāo)系xoy中,以原點為極點,x軸的非負半軸為極軸建立極坐標(biāo)系,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1-\frac{{\sqrt{2}}}{2}t\\ y=2+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t為參數(shù)),曲線C的極坐標(biāo)方程為ρ=6cosθ.
(Ⅰ)若直線l的參數(shù)方程中t=$\sqrt{2}$的時,得到M點,求M的極坐標(biāo)方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)若點P(1,2),l和曲線C交于A,B兩點,求$\frac{1}{|PA|}$+$\frac{1}{|PB|}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.極坐標(biāo)系中,過點P(1,π)且傾斜角為$\frac{π}{4}$的直線方程為( 。
A.ρ=sin θ+cos θB.ρ=sin θ-cos θC.ρ=$\frac{1}{sinθ+cosθ}$D.ρ=$\frac{1}{sinθ-cosθ}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.Rt△ABC,A(-1,3),B(4,2),C點在x軸上,求C點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,過點P(0,2)的直線l與橢圓$C:\frac{x^2}{4}+{y^2}=1$相交于A,B兩點,過點B作x軸的平行線交橢圓于D點.
(1)求證:直線AD過定點M并求點M的坐標(biāo);
(2)求三角形ABM面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知a>b,c>d,則(  )
A.ac>bdB.ac<bdC.$\frac{a}{c}$>$\fracvxf12md$D.a+c>b+d

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=x2-1,g(x)=x+1.
(1)求函數(shù)F(x)=f(x)+|g(x)|在區(qū)間[-2,0]上的值域.
(2)若當(dāng)x∈R時,不等式f(x)≥λg(x)恒成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案