5.已知α為銳角,且$sinα=\frac{4}{5}$,則cos(π-α)=( 。
A.$-\frac{3}{5}$B.$\frac{3}{5}$C.$-\frac{4}{5}$D.$\frac{4}{5}$

分析 由已知利用誘導公式,同角三角函數(shù)基本關(guān)系式即可計算得解.

解答 解:∵α為銳角,且$sinα=\frac{4}{5}$,
∴cosα=$\sqrt{1-si{n}^{2}α}$=$\frac{3}{5}$,
∴cos(π-α)=-cosα=-$\frac{3}{5}$.
故選:A.

點評 本題主要考查了誘導公式,同角三角函數(shù)基本關(guān)系式在三角函數(shù)化簡求值中的應用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

15.函數(shù)$y=\sqrt{{x^2}+2x-3}$的單調(diào)減區(qū)間為(  )
A.(-∞,-3]B.(-∞,-1]C.[1,+∞)D.[-3,-1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.△ABC的內(nèi)角A、B、C的對邊分別為a、b、c.已知a=3,$c=\sqrt{2}$,$cosA=-\frac{{\sqrt{10}}}{10}$,則b=(  )
A.$\sqrt{5}$B.$\sqrt{6}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.若x,y滿足$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≥0}\\{y≥1}\end{array}\right.$,則z=y+2x的最小值為( 。
A.-1B.7C.2D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},則A∩(∁UB)為( 。
A.{0,1,3}B.{1,3}C.{0,2,4}D.{0,2,3,4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知向量 $\overrightarrow{a}$=(cosα,sinα),$\overrightarrow$=(cosβ,sinβ),|$\overrightarrow{a}$-$\overrightarrow$|=1.
(1)求cos(α-β)的值; 
(2)若$-\frac{π}{2}<β<0<α<\frac{π}{2}$,且$sinβ=-\frac{1}{7}$,求sinα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.若p:x<-1,q:x<-4,則?p是?q的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.將圓x2+y2=1上每一點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼?倍,得曲線C.以坐標原點為極點,x軸正半軸為極坐標建立極坐標系,直線l的極坐標方程為2ρcosθ+ρsinθ-2=0.
(1)寫出C的參數(shù)方程和直線l的直角坐標方程.
(2)設(shè)直線l與曲線C的交點為P1,P2,求過線段P1P2的中點且與l垂直的直線的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知圓${x^2}+{y^2}+mx-\frac{1}{4}=0$與拋物線$y=\frac{1}{4}{x^2}$的準線相切,則m=(  )
A.$±2\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{2}$D.$±\sqrt{3}$

查看答案和解析>>

同步練習冊答案