【題目】已知以點A(m, )(m∈R且m>0)為圓心的圓與x軸相交于O,B兩點,與y軸相交于O,C兩點,其中O為坐標原點.
(1)當m=2時,求圓A的標準方程;
(2)當m變化時,△OBC的面積是否為定值?若是,請求出該定值;若不是,請說明理由;
(3)設直線與圓A相交于P,Q兩點,且 |OP|=|OQ|,求 |PQ| 的值.
【答案】(1);(2)的面積為定值;(3)
【解析】
試題(1)由可求得圓心坐標,由的值可求得圓的半徑,進而得到圓的方程;(2)由圓的方程可求得兩點坐標,將面積轉(zhuǎn)化為用兩點坐標表示,可得其為定值;(3)由|OP|=|OQ|可得點O在線段PQ的垂直平分線上,結(jié)合圓心也在線段PQ的垂直平分線上,從而可得,由此可求得的值,即求得圓心坐標,結(jié)合直線與圓相交的弦長問題可求得的值.
(1)當 時,圓心 的坐標為 ,
∵圓過原點, ∴ ,
則圓的方程是;
(2)∵圓過原點, ∴= ,
則圓的方程是,
令 ,得,∴;
令,得,∴,
∴, 即:的面積為定值;
(3)∵, ∴垂直平分線段,
∵ ,∴,
∴ ,解得 .
∵ 已知,∴,
∴ 圓的方程為.
,
此圓與直線相交于兩點,
.
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列{}是等差數(shù)列,數(shù)列{}的前項和滿足,,且
(1)求數(shù)列{}和{}的通項公式:
(2)設為數(shù)列{.}的前項和,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線的方程為,拋物線:的焦點為,點是拋物線上到直線距離最小的點.
(1)求點的坐標;
(2)若直線與拋物線交于兩點,為中點,且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左右焦點分別為,上頂點為,若直線的斜率為1,且與橢圓的另一個交點為, 的周長為.
(1)求橢圓的標準方程;
(2)過點的直線(直線的斜率不為1)與橢圓交于兩點,點在點的上方,若,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為進一步貫徹落實“十九”大精神,某高校組織了“歌頌祖國,緊跟黨走”為主題的黨史知識競賽,從參加競賽的學生中,隨機抽取40名學生,將其成績分為六段,,,得到如圖所示的頻率分布直方圖.
(1)求圖中的值;
(2)若從競賽成績在與兩個分數(shù)段的學生中隨機選取兩名學生,設這兩名學生的競賽成績之差的絕對值不大于分為事件,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,平面平面,,,,,為的中點.
()求證:.
()求證:平面平面.
()在平面內(nèi)是否存在,使得直線平面,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】20名學生某次數(shù)學考試成績(單位:分)的頻率分布直方圖如下:
(1)求頻率直方圖中a的值;
(2)分別求出成績落在[50,60)與[60,70)中的學生人數(shù);
(3)從成績在[50,70)的學生中人選2人,求這2人的成績都在[60,70)中的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com