分析 利用三角函數(shù)的輔助角公式求出$\sqrt{2}$≤$\sqrt{2}$sinθ+$\sqrt{2}$cosθ≤2的等價條件,利用幾何概型的概率公式即可得到結(jié)論.
解答 解:由$\sqrt{2}$≤$\sqrt{2}$sinθ+$\sqrt{2}$cosθ≤2,
得:$\frac{\sqrt{2}}{2}$≤sin(θ+$\frac{π}{4}$)≤1,
∵0≤θ≤π,
∴當(dāng)0≤θ≤$\frac{π}{4}$,
則“$\sqrt{2}$≤$\sqrt{2}$sinθ+$\sqrt{2}$cosθ≤2”發(fā)生的概率P=$\frac{1}{2}$.
故答案為:$\frac{1}{2}$.
點評 本題主要考查幾何概型的概率的計算,利用輔助角公式求出不等式的等價條件是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<c<b | B. | b<c<a | C. | a<b<c | D. | b<a<c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{{\sqrt{3}}}{3}$ | B. | $-\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 是異面直線 | B. | 是相交直線 | ||
C. | 是平行直線 | D. | 可能相交,或相交,或異面直線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向右平移$\frac{π}{4}$個單位,再向上平移1個單位 | |
B. | 向左平移$\frac{π}{4}$個單位,再向上平移1個單位 | |
C. | 向左平移$\frac{π}{4}$個單位,再向下平移1個單位 | |
D. | 向右平移$\frac{π}{4}$個單位,再向下平移1個單位 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{4}{3}$或-$\frac{3}{4}$ | B. | -$\frac{4}{3}$ | C. | -$\frac{3}{4}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com