6.設(shè)數(shù)列{an}的前n項和為Sn,a1=1,且對任意正整數(shù)n,滿足2an+1+Sn-2=0.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=nan,求數(shù)列{bn}的前n項和Tn

分析 (1)由n≥2時,an=Sn-Sn-1,將n換為n-1相減,結(jié)合等比數(shù)列的定義和通項公式,即可得到所求;
(2)求得${b_n}=n{a_n}=\frac{n}{{{2^{n-1}}}}$,運用數(shù)列的求和方法:錯位相減法,結(jié)合等比數(shù)列的求和公式,化簡整理,即可得到所求和.

解答 解:(1)∵2an+1+Sn-2=0,
∴當n≥2時,2an+Sn-1-2=0,
兩式相減得2an+1-2an+Sn-Sn-1=0,2an+1-2an+an=0,∴${a_{n+1}}=\frac{1}{2}{a_n}$;
又當n=1時,$2{a_2}+{S_1}-2=0⇒{a_2}=\frac{1}{2}{a_1}$,即${a_{n+1}}=\frac{1}{2}{a_n}(n∈N+)$,
∴{an}是以首項a1=1,公比$q=\frac{1}{2}$的等比數(shù)列,
∴數(shù)列{an}的通項公式為${a_n}={({\frac{1}{2}})^{n-1}}$;
(2)由(1)知,${b_n}=n{a_n}=\frac{n}{{{2^{n-1}}}}$,
則${T_n}=1+\frac{2}{2}+\frac{3}{2^2}+…+\frac{n-1}{{{2^{n-2}}}}+\frac{n}{{{2^{n-1}}}}$,①
$\frac{1}{2}$Tn=$\frac{1}{2}$+$\frac{2}{{2}^{2}}$+$\frac{3}{{2}^{3}}$+…+$\frac{n-1}{{2}^{n-1}}$+$\frac{n}{{2}^{n}}$,②
①-②得$\frac{1}{2}{T_n}=1+\frac{1}{2}+\frac{1}{2^2}+…+\frac{1}{{{2^{n-1}}}}-\frac{n}{2^n}$
=$\frac{{(1-\frac{1}{2^n})}}{{1-\frac{1}{2}}}-\frac{n}{2^n}=2(1-\frac{1}{2^n})-\frac{n}{2^n}=2-(n+2)\frac{1}{2^n}$,
所以,數(shù)列{bn}的前n項和為${T_n}=4-(n+2)\frac{1}{{{2^{n-1}}}}$.

點評 本題考查數(shù)列通項的求法,注意運用數(shù)列遞推式,考查等比數(shù)列的通項公式和求和公式的運用,考查數(shù)列的求和方法:錯位相減法,考查運算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

4.已知復數(shù)z滿足zi5=1+2i,則$\overline{z}$在復平面內(nèi)對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.設(shè)f(x)=xeax,g(x)=lnx+1
(Ⅰ)a=-1,f(x)與g(x)均在x0取到最大值,求x0及k的值;
(Ⅱ)a=k=1時,求證:f(x)≥g(x)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.成都西博會期間,某高校有12名志愿者參加服務(wù)工作.若每天排早、中、晚三班,每班4人,每人每天最多值一班,則開幕式當天不同的排班種數(shù)為(  )
A.$C_{12}^4C_8^4C_4^4$B.$A_{12}^4A_8^4A_4^4$
C.$\frac{{C_{12}^4C_8^4C_4^4}}{A_3^3}$D.$C_{12}^4C_8^4C_4^4A_3^3$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.設(shè)θ為第三象限角,若tanθ=1,則sinθ+cosθ=$-\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖,在四棱錐P-ABCD中,底面ABCD是菱形,∠DAB=$\frac{π}{3}$,PD⊥平面ABCD,PD=AD=3,PM=2MD,AN=2NB,E是AB中點.
(1)求證:直線AM∥平面PNC;
(2)求證:直線CD⊥平面PDE;
(3)求三棱錐C-PDA體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.在極坐標系中,O是極點,設(shè)點A(1,$\frac{π}{6}$),B(2,$\frac{π}{2}$),則△OAB的面積是$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=3x的定義域為R,滿足f(a+2)=18,函數(shù)g(x)=λ•3ax-4x的定義域為[0,1].
(1)求實數(shù)a的值;
(2)若函數(shù)g(x)為定義域上單調(diào)減函數(shù),求實數(shù)λ的取值范圍;
(3)λ為何值時,函數(shù)g(x)的最大值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的兩個焦點分別為F1,F(xiàn)2,若橢圓上不存在點P,使得∠F1PF2是鈍角,則橢圓離心率的取值范圍是( 。
A.$(0,\frac{{\sqrt{2}}}{2}]$B.$[\frac{{\sqrt{2}}}{2},1)$C.$(0,\frac{1}{2})$D.$[\frac{1}{2},1)$

查看答案和解析>>

同步練習冊答案