分析 (1)根據(jù)f(a+2)=18計算a;
(2)設t=2x,根據(jù)復合函數(shù)的單調性得出h(t)=λt-t2在[1,2]上單調遞減,從而得出λ的范圍;
(3)討論對稱軸與區(qū)間[1,2]的關系得出h(t)的單調性,根據(jù)最大值為$\frac{1}{2}$計算λ.
解答 解:(1)∵f(a+2)=3a+2=18,∴3a=2,即a=log32.
(2)由(1)可知g(x)=λ•3${\;}^{(lo{g}_{3}2)x}$-4x=λ•2x-4x,
設2x=t,t∈[1,2],h(t)=λt-t2,
∵t=2x是增函數(shù),g(x)是減函數(shù),
∴h(t)=λt-t2在[1,2]上是減函數(shù),
∴$\frac{λ}{2}$≤1,即λ≤2.
(3)由(2)可知h(t)=-t2+λt,t∈[1,2]的最大值為$\frac{1}{2}$,
①若$\frac{λ}{2}$≥2即λ≥4,則h(t)在[1,2]上單調遞增,
∴h(2)=-4+2λ=$\frac{1}{2}$,解得λ=$\frac{9}{4}$(舍).
②若$\frac{λ}{2}$≤1即λ≤2時,則h(t)在[1,2]上單調遞減,
∴h(1)=-1+λ=$\frac{1}{2}$,解得λ=$\frac{3}{2}$.
③若1<$\frac{λ}{2}$<2,即2<λ<4,則h(t)在[1,2]上先增后減,
∴h($\frac{λ}{2}$)=-$\frac{{λ}^{2}}{4}$+$\frac{{λ}^{2}}{2}$=$\frac{1}{2}$,解得λ=$±\sqrt{2}$(舍).
綜上,λ=$\frac{3}{2}$.
點評 本題考查了函數(shù)的單調性判斷與最值計算,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | x2=8y | B. | x2=-8y | C. | x2=16y | D. | x2=-16y |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{b^9}{a^8}$ | B. | ${({\frac{a}})^9}$ | C. | $\frac{{{b^{10}}}}{a^9}$ | D. | ${({\frac{a}})^{10}}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 6 | B. | -6 | C. | .3 | D. | -3 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com