6.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{\sqrt{1-{{(x-1)}^2}}}&{x∈[0,2)}\\{f(x-2)}&{x∈[2,+∞)}\end{array}}$,若對(duì)于正數(shù)kn(n∈N*),關(guān)于x的函數(shù)g(x)=f(x)-knx的零點(diǎn)個(gè)數(shù)恰好為2n+1個(gè),則$\lim_{n→+∞}$(k12+k22+k32+…+kn2)=$\frac{1}{4}$.

分析 畫(huà)出函數(shù)f(x)=$\left\{{\begin{array}{l}{\sqrt{1-{{(x-1)}^2}}}&{x∈[0,2)}\\{f(x-2)}&{x∈[2,+∞)}\end{array}}$的圖象,若g(x)=0,則f(x-2)=knx,數(shù)形結(jié)合可得圓心(2n+1,0)到直線(xiàn)y=knx的距離為1,進(jìn)而得到答案.

解答 解:當(dāng)0≤x<2時(shí),(x-1)2+y2=1,(y≥0)
其圖形是以(1,0)點(diǎn)為圓心以1為半徑的上半圓,
當(dāng)x≥2時(shí),函數(shù)f(x)=f(x-2)表示函數(shù)的周期為2,
故函數(shù)f(x)=$\left\{{\begin{array}{l}{\sqrt{1-{{(x-1)}^2}}}&{x∈[0,2)}\\{f(x-2)}&{x∈[2,+∞)}\end{array}}$的圖象如下:

若g(x)=0,則f(x-2)=knx,
由于g(x)的零點(diǎn)個(gè)數(shù)為2n+1
則直線(xiàn)y=knx與第n+1個(gè)半圓相切,
圓心(2n+1,0)到直線(xiàn)y=knx的距離為1,
即$\frac{{|{{k_n}(2n+1)}|}}{{\sqrt{1+k_n^2}}}=1⇒k_n^2=\frac{1}{4}•\frac{1}{n(n+1)}=\frac{1}{4}•({\frac{1}{n}-\frac{1}{n+1}})$
有k12+k22+k32+…+kn2=$\frac{n}{4(n+1)}$.
∴$\lim_{n→+∞}$(k12+k22+k32+…+kn2)=$\frac{1}{4}$,
故答案為:$\frac{1}{4}$

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)的圖象,函數(shù)的零點(diǎn),極限運(yùn)算,直線(xiàn)與圓的位置關(guān)系,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(1-x)(x<0)}\\{g(x)+1(x>0)}\end{array}\right.$,若f(x)是奇函數(shù),則g(3)=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.正四棱錐的底面積是24cm2,側(cè)面等腰三角形的面積為18cm2,四棱錐側(cè)棱的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=$\frac{{a{x^2}}}{lnx}$在x=e處的切線(xiàn)經(jīng)過(guò)點(diǎn)(1,e).(e=2.71828…)
(Ⅰ)求函數(shù)f(x)在[${e^{\frac{1}{4}}}$,e]上的最值;
(Ⅱ)若方程g(x)=tf(x)-x在$[\frac{1}{e},1)∪(1,{e^2}]$上有兩個(gè)零點(diǎn),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知函數(shù)f(x)=$\left\{\begin{array}{l}-{x^2}+a,\;\;\;\;\;\;x≤0\\|{\frac{1-x}{2(x+1)}}|,\;\;x>0.\end{array}$若函數(shù)g(x)=f(x)-x恰有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是$(0,+∞)∪\{-\frac{1}{4}\}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知定義在[-$\frac{π}{2}$,$\frac{π}{2}$]的函數(shù)f(x)=sinx(cosx+1)-ax,若該函數(shù)僅有一個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是(  )
A.($\frac{2}{π}$,2]B.(-∞,$\frac{2}{π}$)∪[2,+∞)C.[0,$\frac{2}{π}$)D.(-∞,0)∪[$\frac{2}{π}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,在△ABC中,已知CD=2DB,BA=5BE,AF=mAD,AG=tAC.
(1)若$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,用$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{AD}$;
(2)設(shè)$\frac{1}{3}$≤m≤$\frac{1}{2}$,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.函數(shù)y=$\frac{(x+\frac{1}{2})^{0}}{|x|-x}$的定義域是(-∞,$-\frac{1}{2}$)∪($-\frac{1}{2}$,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知點(diǎn)P是雙曲線(xiàn)$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)右支上一點(diǎn),F(xiàn)1、F2分別為雙曲線(xiàn)的左、右焦點(diǎn).
(1)證明:△PF1F2的內(nèi)切圓的圓心的橫坐標(biāo)為a;
(2)若點(diǎn)M(a,2),且$\frac{\overrightarrow{P{F}_{1}}•\overrightarrow{M{F}_{1}}}{|\overrightarrow{P{F}_{1}}|}$=$\frac{\overrightarrow{{{F}_{2}F}_{1}}•\overrightarrow{M{F}_{1}}}{|\overrightarrow{{F}_{2}{F}_{1}}|}$,求△PMF1、與△PMF2的面積之差.

查看答案和解析>>

同步練習(xí)冊(cè)答案