分析 (1)根據(jù)題意,利用切線長(zhǎng)定理,再利用雙曲線的定義,把|PF1|-|PF2|=2a,轉(zhuǎn)化為|HF1|-|HF2|=2a,從而求得點(diǎn)H的橫坐標(biāo);
(2)由已知向量等式可得M為△PF1F2的內(nèi)心,由三角形的面積公式作差,結(jié)合雙曲線定義可得答案.
解答 (1)證明:如圖所示:F1(-a,0)、F2(a,0),
設(shè)內(nèi)切圓與x軸的切點(diǎn)是點(diǎn)H,
PF1、PF2與內(nèi)切圓的切點(diǎn)分別為A、B,
由雙曲線的定義可得|PF1|-|PF2|=2a,
由圓的切線長(zhǎng)定理知,|PA|=|PB|,故|AF1|-|BF2 |=2a,
即|HF1|-|HF2|=2a,
設(shè)內(nèi)切圓的圓心橫坐標(biāo)為x,則點(diǎn)H的橫坐標(biāo)為x,
故 (x+c)-(c-x)=2a,
∴x=a;
(2)解:由$\frac{\overrightarrow{P{F}_{1}}•\overrightarrow{M{F}_{1}}}{|\overrightarrow{P{F}_{1}}|}$=$\frac{\overrightarrow{{{F}_{2}F}_{1}}•\overrightarrow{M{F}_{1}}}{|\overrightarrow{{F}_{2}{F}_{1}}|}$,得$\frac{|\overrightarrow{P{F}_{1}}||\overrightarrow{M{F}_{1}}|cos∠M{F}_{1}P}{|\overrightarrow{P{F}_{1}}|}$=$\frac{|\overrightarrow{{F}_{2}{F}_{1}}||\overrightarrow{M{F}_{1}}|cos∠M{F}_{1}{F}_{2}}{|\overrightarrow{{F}_{2}{F}_{1}}|}$,
∴cos∠MF1P=cos∠MF1F2,可得M在∠PF1F2的角分線上,
又M(a,2),結(jié)合(1)可知,M為△PF1F2的內(nèi)心,
∴${S}_{△PM{F}_{1}}-{S}_{△PM{F}_{2}}$=$\frac{1}{2}|P{F}_{1}|×2-\frac{1}{2}|P{F}_{2}|×2=|P{F}_{1}|-|P{F}_{2}|$=2a.
點(diǎn)評(píng) 本題考查直線與圓錐曲線位置關(guān)系的應(yīng)用,考查了雙曲線的簡(jiǎn)單性質(zhì),考查數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{21}$ | B. | $\frac{2\sqrt{29}}{3}$ | C. | 2$\sqrt{21}$ | D. | 2$\sqrt{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1,1 | B. | -1,-1 | C. | 2,-2 | D. | 2,2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com